AUTHOR	Lerner, Janet W.: Schuyler, James A.
TITLE	Computer Applications in the Field of Learning
	Disabilities. Pinal Report.
INSTITOTION	Northwestern Univ. Evanston. Ill. Dept. of Communicative Disorders.
buread no	BR-23-176y
PUB DATE	Aug 73
GRANT	OEG-0-71-3736(603)
note	102p.
EDRS PRICE	MF-40.75 HC-\$5.40 pLOS POSTAGE
DFSCRIPTORS	Computer Oriented Programs: Computer Science;
	*Computer Science Education; Concept Pormation;
	Course Evaluation; Curriculum Enrichaent; Didgnostic
	Teaching; Individualized Instruction; Inforgation
	Dissemination; *Learning Disabilities; Siaulation:
	*Teacher ミducation; Teaching Procedures; *Training
	Techniques

Abstract

A study was made to investigate the uses of the computer in the field of learning disabilities and to improve the education and training of prospective learning disabilities specialists. This was accomplished by applying the ideas, concept.s, methods, and procedures of the compater sciences to the curriculum of a progran that prepares special personnel for the field of learaing disabilities. The specific objectives vere: (1) to develop interactive computer programs that would simulate the diagnostic and clinical-teaching processes and to inplement those procedures within the curriculum of the learning disabilities program, and (2) to develop a mode for a course that would introduce the learning disabilities specialist to certain fundamentals of computer technology and to implement such a course within the learning disabilities curriculum. This report describes those two aspects of the project, as well as several related computer developments. certain sample programs, and a report of evaluation and dissemination procedures. (Author/HCM)

COMPUTER APPLICATIONS IN THE FIELD OF LEARNING DISABILITIES Janet W. Lerner, Ph.D. James A. Schuyler, Ph.D.

Preparation of Personnel in the Education of the Handicapped
Special Project Grant
U.S. Department of Health, Education, and Welfare

Northwestern Uni versity Department of Communicative Disorders

School of 5 peeech
Evanston, lllinois 60201
August, 1973

FINAL REPORT

Project No. 23-1769
Grant No. OEG-0-3736 (603)

COMPUTER APPLICATIONS IN THE FIELD OF LEARNING DISABILITIES

Janet. W. Lerner, Ph.D., Director
James A. Schuyler, Ph.D., Co-Director

August 30, 1973

The research reported herein was performed pursuant to a grant with the Office of Education, U.S. Department of Health, Education and Welfare, Bureau of the Handicapped.

This document to isocessed Eor the ERIC Docunciat ieproduction service by. the ERIC Clearinchouse at Stanford. We are aure that some pages probabl: will not be rexiable in microfiche or in lto.deopy form. ilowever, this is the best available copy, and we feel that the document should rot be withheld frca interested readers on the basis of these unreaciable panes alone.

We would like to express our appreciation to several of the Individuals who actively assisted us in the completion of the project. Mrs. Connie Hayes a graduate asoistant and specialist in computer science palyed a key role in many aspects of the course, including the development of BASIC and FORTRAN workbooks and the evaluation procedures of the course. Mr. Bruce Foster, a computer specialist at Northwestern University, was helpful in the development of the clinical-teaching computer program. Dr. David 0 . Anderson helped in the development of the computer simulation. Typing was ably done by Mrs. Carole Bruning and Merilyn Farella.

We would also like to mention faculty, students, and staff of the learning disabilities program as well as members of the Communicative Disorders Department in the School of Speech. Dr. Harold J. McGrady and Dr. Doris J. Johnson of the learning disabilities program Professor Benjamin Mittman of the Vogelback Computing Center and Dean Roy V. Wood of the Speech School at Northwestern University are all to be thanked for their help.
J.L.
J.S.
page
Abstract iii
Objec'.ives 1
Sir alation of the Diagnostic and Clinical Teaching Process: A Method for Training Learning Disabilities Specialists 5
Development and Teaching of a Course in Computer Applications in Learning Disabilities 30
Related Developments 37
Evaluation 47
Supplementary Inforwation (Appendices) 82
Diagnostic process Programs
WORKBOOK for BASIC programming

ABS TRACT

The purpose of this project was to investigate uses of the computer in the field of learning disabilities and to improve the education and training of prospective learning disabilities specialists by applying ideas, concepis, methods, and procedures of the computer sciences to the curriculum of a program that prepares special personnel for the field of learning disabilities. The specific objectives were (1) to develop interactive computer programs that would simulate the diagnostic and clinical-teaching processes and to implement such procedures within the curriculum of the learning disabitities progrum, and (2) to develop a model for a course that would introduce the learning disabilities specialist to certain fundamentals of computer technology and to implement such a course within the learning disabilities curriculum.

This report describes those two aspects of the project, as well as several related computer developments, certain sample programs, and a report of evaluation and dissemination procedures.

OBJECTIVES

The technological revolution created by the computer in the last decado has succeeded in revamfing many areas of human endeavor. New ways to analyze data, new ways to develop models, new ways to study relationships, now ways to teach and to learn, new ways to store and retrieve data, and new ways to simulate experiences are now possible.

The computer, one of the most powerful and adaptable tools of technology, has made tremendous contributions to many fields of enceavor. However, the impact of computer technology has been scarcely felt in the field of learning disabilities. There have been few applications of computer technology, other than the use of library programs to analyze statistical data in research studies. Most students preparing to be learning disabilities specialists and researchers within college and university programs throughout the nation have not been exposed to computer technology; consequently the potential applications of computer science to this field has been largely uninvestigated.

The field of learning disabilities is concerned with the analysis, diagnosis, and treatment of children who are unable to learn in a normal manner, in spite of the fact that the primary cause of their problem is not due-to re-tarded mental development, sensory defects, emotional disturbance, or lack of opportunity to learn. The definition used within the "Children with Specific Learning Disabili'tes Act of 1969" (P.S. 91-230) as recomended by the National Advisory Committee on ths Handicafped provides the concept of learning disabilities as used in this study:

The term "children with specific leaining disabilities" means those children who have a disorder in one or more of the basic psychological processes involved in understanding or in using language spoken or written, which disorder may manifest itself in imperfect, ability to listen, think, speak, read, write, spell, or do mathematical calculations. Such disorders include such conditions as perceptual handicaps, brain injury, minimal brain dysfunction, dyslexia, and developmental aphasia. Such terms do not include children who have learning problems which are primarily the result of visual, hearing, or motor handicaps, or mental retardation, of emotional disturbances, or of environmerital disadvantage.

It is likely that learning disabilities specialists will be located in career positions that will provide access to computers. Whether they are 10^{-} cated in public schools, clinics, hospitals, or universities, computer hardware and software will probably be avallable for use in research, diagnosis, treatment, and in-service education. With a greater awareness of the potential uses of the computer and certain fundamental knowledge and skill, learning disabilities specialists could better communicate with computer science specialists and encourage them to tackle problems in learning disabilities.

The use of the computer requires the user to convert his mode of thinking and analysis to termis that are objective, specific, and systematic. While in - field that deals with human problems of a child's failure to learn, it is essential to realize the importance of feelings, rapport, and the intuitive skills of the clinician, we must aiso take advantage of the available technological tools if progress is to be made.

The exploration of ways to bring this new technology to the field of learning disabilities was the purpose of an interdisciplinary research project at Northwestern University. The work was a joint effort of specialists in the fields of learning disabilities and computer science. The focus of the project was the development of teacher-training applications. Three areas of computer applications 9 developed: (1) simulation of the diagnostic and clinicai teaching proc s ; (2) a computer course for specialists in learning disabilitios and relited zeas of s,tudy; and (3) related applications of the computer to the field of learning disabilities.

The project covered a period of two-years: September 1, 1971 through August 31, 1973. The first year was devoted to (1) the planning and writing of the simulation compiter programs designed to enhance the skills of the learning disabilities speci st, and (2) planning the course to introduce the computer to learning disabilities specialists. The second year of the project was devoted to (1) implementing the computer simulation programs into the on-going learning disabilities program. and (2) teaching of the course on computer epplications in learning disabilities twice during the academic quartet-A the Winter and Summer quarters.

a. Lnteractive Computer Simulation of the Diagnosis and Clinical-Teaching Processes

The purposes of the project were to develop computer programs that would provide graduate students who are preparing to be learning disabilities specialists with the opportunity to have simulated experiences of the diagnostic and clinical-tesching processes as part of their educational training and to integrate these experiences within an on-going learning disabilities program.

A primary aim of learning disabilities programs in colleges and universities is to train prospective specialists to make a diagnosis of a child with a suspected learning disability and to plan and implement remediation within a clinical-teaching program. The process of diagnosing and teaching is an ongoing dynamic process requiring the incorporation of many elements and variables including test scores, observational data, medical reports, and case histr, ry information. The selection of data, the functions to be tested, follow-up procedures, hypothesis formulation concerning the nature of the problem, recommendations and referrals, and the designing of a teaching plan are among the dacisions that must be made.

Typically the diagnostic and teaching process is discussed in a theory course, and the student gains practical experience while working with children in a clinic or practicum course. Students generally find such clinic experiences extremely valuable. Unfortunately, this clinic practice is often limited within the training program because of the costs involved. There are several reasons
why clinical experiences are often insufficient to adequately train the specialists: clinic space is often limited, college supervisory personnel are in short supply, and student time that can be devoted to clinic work is insufficient. Moreover, students must be closely supervised so that mistakes are avoided for they may be costly for the child involved.

Computer simulation can provide one way to supplement and enrich training experiences for the learning disabilities specialist. Moreover, he can learn through the process of making mistakes while working with a computer simulated child. Simulation can bridge the gap between the thec; y course and the clinic experiences, offer students the opportunity to learn by making mistakes, and provide a simulated learning disabilities setting to participate in the decisionmaking process. The simulated cases provide additional experience for each student in the training program at very low expense (15 to 35 cents per simulation when run in groups of three or four students). Details on the computer costs encountered in running these programs are given in the section on Evaluation.

b. Lntroduction to Computers for Learning Disabilities Specialists Course

The objectives of this strand of the project were to plan and to teach a one-quarter course presenting possible uses of the computer'in the field of learning disabilities, and outlining present uses in related fields.

The computer is so rapidly becoming an accepted tool in almost every field of endeaver that some knowledge and familiarity with the technology is considered to be part of a broad education of any sort. Consequently, it seems important to us for laaders in learning disabilities to develop some computer background, both for their own benefit, and to help them deal with potential developments from related fields. Areas of development and application in fields related to learning disabilities includes computer-based instruction, computer-managed or prescribed instruction, selection of teaching materials and methods, simulation, record-keeping (part of information-retrieval), research methods and statistical analysis.

Learning disabilities specialists are more and more likely to find themseives in career positions in hospitals, schools, clinics and other agencies that use computers and have available computer time. The electronic machinery could well be used for investigating cortain problems of learning disabilities, for research, for diagnosis, for treatment, for record-keeping, for statistical analysis and for in-service education. With a greater understanding of the nature of computer capabilities on the part of the learning disabilities specialist, he could better communicate with computer science specialists. Such interdisciplinary cooperation would promote the tackling of additional problem areas.

The overall purpose of the course introducing computer to learning disabilities specialists was to provide future learning disabilities specialists with this essential background. The course was planned for the specific backgrounds and needs of the learning disabilities specialists.

The specific objectives of the course include the following:

1. To dovelop an awareness and appreciation among students of what is happening to domputer technology, and to deve lop en open attitude toward computers; and their uses, as well as knowledge of their limitations.
2. To develop familiarity with the ways the computer is being used in fields related to learning disabilities.
3. To deve lop the ablifity to clearly analyze problems and reduce them to form easily handled by the computer. We would also like students to be able to adequately evaluate promotional materials put out by computer hardware and software manufacturers.
a) to learn about "systems analysis methods;
b) to learn about tools such a flow-charting, PERT, CPM and related techniques for diagramming system relationships;
c) To learn about programming languages and their uses, plus acquiring direct programming experience.
4. There are some skills we feel are necessary for each student, including:
a) The ability to discern what a "library program does, given access to a write-up" or manual, or as a last resort, by examining the progrem itself;
b) the specific ability to use the Statistical Package for the Social Sciences (SPSS) to perform various types of analysis, or the ability to use the UCLA Biomedical programs;
c) the ability to write simple programs in FORTRAN or BASIC, two of the more commonly avallable computational languages;
d) a knowledge of direct-interaction techniques and experiences with Computer-Assisted-Instruction (PLATO/LINGO systems);
e) a familiarity with time-sharing concepts, costs and benefits;
f) thorough know ledge of where to look for reference manuals, consultants and other aids to computing.
5. To encourage and support student work on computer applications to the field of learning disabilities and related areas. A number of stưdents pursued the computer further, and these individual student projects were-supported within the course. These projects are presented in the section on Evaluation.

Simulation of the Diagnostic and clinical Teaching Process: A Mothod for Iraining_Leaning Dlsobilities Specialists

Interactive Computer Simulation of Diagnosis and Clinical-Teaching Processes

This section describes the development of computer programs designed to provide students with an interactive simulated experience of the diagnosis and clinical-teaching processes. The programs were developed during the first year - of the project. These simulations were incorporated as part of on-going courses within the Learning Disabilities program at Northwestern University during the second year of the project.

Although the computer programs were designed to simulate the actual conditions of the Diagnostic CIInic at Northwestern University, the parameters were developed in a general way so that they could be easily changed to fit conditions, of other diagnostic settings. For example, while the program simulates the Learning Disabilities Diagnostic Clinic at Northwestern University, where children attend the clinic for about three hours in the morning and an additional two hours in the afternoon (a total of five hours for the day), these time limits can be easily changed to meet other clinic conditions. Moreoiver, although a large varisty of tests, reports, and other assessment data was inputted into this program a specific user may wish to substitute or add other informational data into the simulation. The program was written so that such data can be readily added.

The operational simulation is designed to provide additional experience in the making of a diagnosis during the training period; it is not intended to be a substitute for either the teaching of the concepts of making a diagnosis in a formal course or for the experience of working with real children in a clinic or practicum course.

The following computer simulations will be discussed: 1) Simulation of the Diagnosis Process-Batch Mode; 2) Simulation of the Diagnosis Process-Shared-Time; 3) Simulation of the Clinical-Teaching Process.

1. Simulation of a Diagnosis: Batch Processing

The operational simulation is p:anned for use as an integral part of a graduate course in Diagnosis of Learning Disabilities to enable students to practice making decisions related to the diagnosis of children with learning disabilities. The diagnosis can be accomplished during scheduled class periods. The "computer" child "attends" the clinic for the same length of time that children actually do attend the diagnostic clinic at Northwestern University and he is subject to similar tests, reports, and observations. The clinic staff (siudents participating in the simulated session) actually meet to plan, to develop hypotheses, to make decisions, to develop a diagnosis, and to recommend teaching procedures.

The computer program stores in computer memory extensive information on a specific child who is being diagnosed. Diagnostic teams, consisting of about five student staff members, make a series of decisions concerning the simulated
case. Diagnostic decision-making requires the specialists to arrive at decisions concerning the case history, observations, and tests to be given and interpreted.

Realistically, certain constraints limit data collection within any organizational setting, and these constraints affect decisions. Constraints include variables such as time, money, and facilities. Some of these constraints are built into the simulation program. For example, the scarce resource is time; each request or decision comes at a cost of time. If Silent Ranading Test A is given in the morning session, the computer checks to find how long this particular test takes to administer and if sufficient time remains in the diagriostic session to give it. Either the score and other pertinent related information is given in the print-out or the computer message in the print-out informs the diagnostic team that the time remaining is insufficient to administer that test. The computer, then, checks to find if another test requested by the team could be given in the remaining time. If not, the simulated child goes to lunch.

The teams participating in the computer simulation meet for several staffing sessions to make diagnostic decisions. A computer print-out based on their decisions is given to each member of the team at the following simulated staffing session. The routine of staffing sessions and computer print-outs is diagramed in the flow-chart shown in Figure 1 . There are four staffing sessions: (1) pre-staffing; (2) noon-staffing; (3) post-staffing; and (4) a concluding session.

Stepes of the Diagnosis Training Session

Decision 1: Simulated Pre-staffing. In the actual Diagnostic Clinic at Northwestern University the staff meets to plan the diagnosis several days before the child is scheduled to come to the clinic. Information gathered about the child is reviewed and decisions about needed information are made: diagnostic information includes informal and formal tests, reports from other professionals who have worked with the cliild, reports on behavioral characteristics, parent-interview information, etc. The morning diagnostic session is carefully planned. Similarly, at the simulated pre-staffing, the team receives preliminary information about the child and the team decides what further diagnostic data is needed. The team can obtain scores from a large variety of tosts, either total scores or subtest scores. In addition, medical reports, teacher behavior reports, case history data, speech and language reports can be obtained. Each piece of information, however, is tied to a realistic tine constraint. Since the morning diagnostic session is scheduled for the simulated time period of 9:00 a.m. to 12:00 noon, the computer releases only three hours of diagnostic information to a team.

The pre-staffing thus consists of planning that morning diagnostic session wisely. Each member of the team receives preliminary information on the child; in addition, he receives a list of the various kinds of diagnostic information he can obtain. Chari 1 in the Appendix ($D . A-1-4$) shows 159 units of evaluation information on one child. Although each team is diagnosing the same simulated child, each team receives different information because each reaches different diagnostic decisions regarding the information needed. The Decision 1 Chart in

the Appendix (p. A-5) shows the form used to record the staff decisions at the pre-staffing. In the batch processing method, these decisions are key-punched and the deck is submitted for processing.

Decision 2: Simulated Noon-Staing. In the actual Diagnostic r.linic at Northwestern University, the child gues for lunch from 12:00 noon to 1:00. During this period, the diagnostic staff discusses the observations, scores, case history reports and other findings gathered during the morning. The staff attempts to organize these findings so that decisions lead to an efficient and useful afternoon diagnostic session. In a similar manner, at the simulated noon staffing, each member of the team receives a computer print-out of the results of the morning decisions which enables him to plan for two hours of additional diagnostic examinations (1:00 to 3:00 p.m.). (See sample print-out for Decision 1 in the Appendix, p. $A-6,7$).

At the noon-staffing, the team begins to develop a hypothesis concerning the child's problem and decides on the information needed to test or substantiate the working hypothesis. The Decision 2 Chart (Appendix p. A-8) shows the form used by the team to indicate the noon-staffing decisions. in the batch processing method the team decisions are keypunched and the deck is submitted for processing.

Decision 3: Fost-Staffing. In the actual clinic at Northwestern University the staff meets at the end of the day to pull together the findings of the diagnosis, to formulate an analysis of the child's problem, to plan reports and to make referrals, and to develop appropriate teaching plans. This information is also discussed with the parents. Similarly, at the simulated post-staffing the teams evaluate the information obtained during the simulated sessions and develop a series of diagnostic decisions. Therc include decisions such as determining whether the child has a disability, his level of development, his areas of strengths and weaknesses, further referrals needed, and recommended teaching procedures.

At the post-staffing session, each member of the team receives a computer print-out giving the information obtained during the afterooon diagnostic sessior, (see Sample rint-out, Decision 2, Appendix p. A-9). Each team now has five hours of diagnostic information to use in the formulation of a diagnosis. Each team develops a diagnosis of the simulated child and answers thirteen questions, which are shown on the Decision 3 rhart (Appendix, p. A-10,11. The decisions, are keypuriched and the job deck submitted.

Decision 4: Concluding ession. in the actual clinic, the case is discussed in retrospect. Peports are written and follow-up discussions are held with schcal personnel and otlier protessionals. In the simulated concluding stafting each member of the class receives a print-out showing the decisions made ly all the participating teams isee cample rint-out for Derision \therefore, Appendix, p. Ali-11. . Juring this class discussion, students have the opportunity to cuestion the diagnosis made by other teams and they may be asked to explain the rationule for decisions made uy their teams. The diagnose: made by the various toans ary comparet.

A second part of the concluding sessions involver the making of terdinite decisions. All work thus far has been conducted ar a team; however, at this
stage students individually make decisions concerning appropriate teaching strategies for the child they have been diagnosing as a team. For each teaching technique, students decide whether they would or would not use the specific method in question. In addition, they specify the reason for their choice. The answers are keypunched and the job deck submitted. Their responses are compared to the decisions made by a Delphi Group, a group of staff and faculty responsible for the diagnostic and teaching clinics at Northwestern University. . Each student receives a print-out showing his overall score, as well as subscores in seven different areas of teaching: visual processing, auditory processing, reading, motor, cognitive skills and arithmetic, language and speech, and behavior. Decision 4 Chart (Appendix, p. Al7-19) shows the form used for making the teaching decisions. Sample frint-out for lerisions 4 (Appendix, p. A20-21) shows a results of Decision 4 received by onk : tudent and output showing the performance of the entire class.

Computer Programs Deve loped for the Batch frocessing

Diagnosis Simulated Iraining Session

All computer programs for the Hatch Processing liagnosis simulation were written in FORTRAN IV. Four difterent computer programs are used. They are:

1. CREATE, creates random access file for prouran sIMCASE.
2. SIMCASE, Decision 1 and Decision 2 (1're-slaffing and Noon staffing).
3. DIAGNUS, Decision 3 (rost-staffingi:
4. TEACH, Necision 4 (Concluding staffing).

Each of these programs is discussed below.
CREATE and SMMCASE. These programs are used for Decition 1-and Decision 2, the pre-stafting and nion :.l.sffing sessions. A rumber of difforent cases have Leen develones, exh wifhich is designed to ruireselll a difterent type of


```
SAlIV :HACASH.
1EC(4) BLMA.1:
Arthin Sitm.l:, ,
```


The cimCasc proyram ans iteveloped ir two ver.ion.. Uer sion I uses
 Each version is described belew.

Version 1. This prograll was written in FORTKAN IV, and is shown in PROGRAM 1, page A22-24. The program pertorms the following operations:

1. Reads the pertinent information regarding the child under study from the data cards.
2. Reads the analytic test names and the child's grade or year performance on each of these tests from data cards.
3. Reads descriptive information regarding the diagnostic teams involved in the analysis from data cards.
4. Prints the child's test results for those tests requested by each diagnostic team. Only the results from those tests which can be administered in a session of 120 minutes or 180 minutes are listed. The message, "There is too little time to administer Test 2" appears for those tests which take more time to administer than remains in the diagnostic session.

Version 2. Certain difficulties were discovered in using version 1 of the SIMCASE Program.

All test names and performance information were contained in main-memory and a double-dimensioned FORTRAN array. A fixed amount of core was used for each test, no matter what the length of the description. The description of each subtest, which could be given both individually as a subtest or as a part of an entire test battery, was repeated in the main array. (For example, the Frostig Eye-Motor Coordination could be given separately and/or could be givan as part of the entire Frostig Developmental Test of Visual Perception.) Therefore, the Frostig Eye-Motor Coordination test was repeated twice in the original version. This required that an excessive amount of main-memory be allocated to the program whenever it was run at Northwestern on the CDC 6400 Computer. Programs with such large core requirementis can only be run in the evenings, which makes the turn-around time unnecessarily long.

To eliminate this problem, the program was revised; the new version placed the descriptive information on direct access (random) file to eliminate any duplication of information. This random file is catalogued as a permanent system file and therefore can be used often and need not be created each time the diagnostic program is run. This revision cuts the core requirement of the program to a reasonable level.

The new version also makes the amount of time allocated to a diagnostic session a variable which can be read in at the time the program is run. In the original program, two standard periods were included, 180 minutes and 120 minutes. This change permits flexibility in the diagnostic time period so that the session may last any length of time specified.

Version 2, therefore, was rewritten as two programs. The first program is CREATE and does the following:

1. Creates a random file of analytic test names and performance information from data cards.
2. Catalogs this file as a permanent file in the syster..

The second program is SIMCASE and is similar to Version l. The differences include:

1. The number of minutes allotted to a diagnostic session is variable and is read in from a data card.
2. A direct access file is searched to find the diagnostic information requested by each diagnostic team.

The computer programs for both Version 1 and Version 2 of the diagnosis program as well as several computer print-outs resulting from team diagnostic decision. are shown in the appendix. CREATE (PP. A25-26); SIMCASE (PP. A27-32). DIAGNOS. This computer program, written in FORTRAN IV compiles the responses to the diagnostic questions made by each team. It provides a print-out of the decisions to each question by all teams for each member of the class. This material provides a basis for the class discussion of the diagnoses made by the various teams. This program is shown in the Appendix (pp. A32-34).

IEACH. This program evaluates the teaching decisions made by various members of the class, comparing an individual's responses to those of the other members of the class and to the Delphi Group's,* the responses of a group of staff and faculty responsible for the clinics and clinical teaching. From the teaching decisions made by the Delphi Group, a weighting system was developed that oecame the basis for the evaluation of student responses. In addition to an over-all score, the teaching questions were divided into seven categories: visual processing, auditory processing, speech and language, motor, cognitivearithmetic, reading and behavior. In this way the student receives some idea of how he is doing in each of these learning areas. Program TEACH is shown in the Appendix (pp. A35-42).

Each of the four programs described above is written in FORTRAN IV.

2. Simulatien of the Diagnosis: Shared-time Processe (ONLINE)

The "batch processing" simulation requres separate computer-runs for each stage. The participants decide on all tests for the morning session (for example), then these choices are entered for processing by the computer program. At Northwestern, processing takes from ten minutes to one hour, depending upon time of day and the number of students using the computer. The transferrability of such a program to universities where this "turn-around" (job-processing) time is longer might require more time for one simulated step. We have gotten around some of these problems by creating an "interactive" simulation of the diagnosis procedure.

The interactive simulation must perform several tasks the "batch" simulation need not deal with. (1) it must be easy to use, since there will be no programmer or instructor available to help when the studen'rs don't under-
*
"Delphi is a technique for pooling the opinions of "experts" through several cycles of revision and comment by participants in the group. This technique has recently evolved into something called Delphi-conferencing, in which the computer takes the role of information-storage device and moderator for the conferences. We have not used this technique in this study, but the name implies the ratings represent a pooling of the opinions of "experts".
stand instructions, (2) it must allow the student to learn about individual tests, their scores, functions and interpretations, and (3) it must record information the teacher needs to evaluate the students' performances and direct them toward better techniques.

These goals are f zlitated by writing the program for the CAI system on our CDC 6400 computer. Each student can call the computer from the portable data-terminal. The simulation program is accessed by name; the student needs no computer "system" knowledge. Once it is operating, it gives full instructions on its use, plus a sample run, if the student requests one. Whenever the student has trouble, he asks the computer for help. The computer will either answer questions, about the program's functioning, or answer questions about specific tests from the list of available reports. The recording of information for the teacher is semi-automatic. The enclosed results (Appendix pp. A57-61) of student runs were produced by that recording facility. Statistics can be developed from these: records to show the diagnostic process in more detail.

How the simulation Works.

Information about a number of simulated children (Harvey, Sally, George, etc.) is stored in the computer, along with a single copy of the interactive program. Any number of students may access the program at- one time; and a number of them may be using the same child. Recording of student data takes place independently for each student. The student calls the regular Computer-Assistedinstruction system from a regular telephone, using the computer-terminal provided.. They tell the system that they wish to use the Diagnostic Simulation, and then tell it which child is to be examined. Normally the student examines only one child at a time, formulating a final diagnosis before going on to another case. A morning session (or three hours) and an afternoon session (two hours) are provided automatically. Short breaks are taken occasionally when the child needs to take a drink, or when the phone rings. The student selects the test to be given, and tells the computer, either by typing the number of that test (from a mimeographed list provided) or by typing its name. The computer has a list of names it can search, and the system makes it possible to check for misspellings and "close" matches, then retrieve the proper test or report for the student. The computer responds by typing the child's test-score (for either a single test or a whole battery of tests) or a report, as requested. If time is not available, the computer tellis the student to select another test. When results are received (usually in about 3 seconds), the clock starts again; time for the test is subtracted, and the clock runs while the student decides which test to use next. In tests run recently we found that the simulated day $(5$ hours) takes about $1 \frac{1}{2}$ hours at the computer-terminal, and costs about $\$ 1.50$ including phone and "connect" charges assessed for using groups of students from two to five; this promotes discussion of the case under consideration and allows the students to gain from the same kind of interaction they will experience in the slinic. Thus, costs of the simulation can run from $\$.30$ to $\$.75$ per student. Because the entire interaction is recorded on the computer for later analysis, each student can also receive a printed copy of the session when he next comes to class.

0
A student may do the morning session altogether, then hold his position (a function of the CAI system does this for him) and do the afternoon session at some later time. Or a session may be interrupted and resumed later on. This allows the student to do any required library work before requesting more
tests. We view the simulation as a part of the learning process, and though we try to simulate the clirical situation as closely as possible, we feel we must allow each student some time to get outside information where required.

One advantage of having an on-line, interactive simulation, is that we are not limited to classroom situations. The data-terminal, being portable, can be carried anywhere a telephone is available. We can use our simulation in class, at the clinic (during spare moments), at the computing center, or at a teacher-training session. We believe this will make it easier for summer and night-school students to gain diagnostic experience, also.

3. Clinical-Teaching Simulation.

1
The clinical-teaching simulation was designed to give a prospective learning disabilities specialist the opportunity to make clinical-teaching decision. By interacting with a computer, he receives feedback to indicate the effectiveness of his teaching decisions.

In this context, clinical-teaching means the tailoring of learning experiences to the unique needs of a particular child. The initial diagnosis is a means of obtaining preliminary information, but diagnosis should not stop when treatment begins. A continuous and integrated diagnosis and treatment process becomes the essence. of clinical-teaching. The clinical teacher modifies the teaching procedures and plans as new needs become apparent. clinical -teaching is also viewed as a test-teach-test process with the teacher skillfully alternating his role between teacher and tester. First the child is tested; a unit of work based on the resulting information is then taught to the child and he again is tested to determine what he has in fact learned. If the child passes the test, the clinical. teacher is informed that the teaching has been successful; and he plans the next stage of learning. If the child fails the test, analysis of why he has failed is valuable for subsequent teaching. Clinical teaching differs from regular teaching because it is planned for an individual child rather than for an entire class; for an atypical child rather than for the mythical average child. it is continuous in that each response to a teaching or testing situation gives additional clues about the child, which provide guidelines for subsequent teaching decisions.

Several models of clinical-teaching have been suggested Chalfant, et al, 1970; McCarthy, et al, 1970; Schwartz, 1971; Robbins and others 1969; Adelman, 1971; Reynolds and Balow, 1972; Sabatino, 1968, 1971).

An important aspect of clinical-teaching is the skill of interpreting feedback information and the need for continuous decision-making. The clinical teacher needs the following competencies:

1. Understanding the child. Be able to specify how a particular child functions -- the things he s:an do and those he cannot do, his areas of strengths and weaknesses, his developrental levels as they effect school subjects.
2. Understanding the task. Know the process of task development and the components needed to perform specific skills.
3. Relate the task to the child. Use data gathered from both tests and observation on information behavior in teaching to bring about improvement in the child's performance.
4. Make appropriate decision. Be able to make appropriate decisions using this information to bring about improvement in the child.

The Clinical-Teaching Model

The diagram, shown on the following page, represents the underlying model of clinical tyaching used to program the computer simulation. The scores on typical tests are placed in the computer to create a simulated learning disabilities child. For each portion of a simulated clinical-teaching lesson, the student makes a lesson plan and can decide to either (a) administer a test to find out something about the child, or (b) teaching something, using one of many possible teaching methods. The time spent on a test is pre-determined, while the time spent on a teaching technique is determ: ned by the student. If a test is given, the compster program checks to see how much time is left in a simulated one-hour period (the actual time available in a single session with a child in the clinic). If a teaching method is selected, the appropriate time is deducted and the decision enters the "effects" calculations. As a result, depending upon the present status of the child and the method selected, the child's test scores and behavior index may be changed, either positivaly or negatively. The behavior change (index) is printed at each step, but the test score changes are not known unless the student decides to give the appropriate test (which takes more time, of course).

The "effects" calculations are the heart of the simulation program. It consists of a number of postulated connections between teaching methods and scores. The effect of a given teaching method is determined by the child' scores, but in addition, it is affected by the techniques used previously in the case.

A student proceeds through the simulation as outlined below. He sees final results only after twenty simulated hours, which may require a week or more of sessions on the computer (doing two hours' time a day). The student may investigate alternative teaching methods in the program's tutorial mods.

Tr.s simulation is planned to be equivalent to twenty hours of clinicalteaching; two one-hour sessions per week for a 10 week quarter. This is roughly similar to the time periods cf the clinical-teaching clinic at Northwestern University. At the end of that period of time students can judge their clinical teaching decision skills by noting the amount of improvement the child has made in academic areas. The experience can simulate a ten-week period of time that can be completed in about one hour of real time. A number of assumptions about relationships and functions gathered from the research literature are used in building this simulation, and these underlying assumptions are presented to the user. Users' responses will be storea on tape and these responses will be used to change, revise, and modify the program.

A sample of the output of the clinical-teaching simulation is shown at the end of this section.

Devalopment of the Clinical-Teaching Simulation

In the development of the clinical-teaching simulation, a number of problems were encountered. These problems and subsequent decisions are briefly described below.
"General" Model of Learning Disabilities or a "Specific" Model.:
The developers initially attempted to devise a generalized clinicalteaching model for the simulation that would handle a variety of children with learning disabilities problems. The complexity of such a system soon became epparent, and this led the way for a decision that a more feasible initial model weuld he one that could zarefully analyze and monitor the progress of a single child with one specific type of learning disability. Tony was selected as the specific case for intensive work. Tony had a severe auditory perception problem which affected reading, spelling, and writing, as well as certain other related areas of learning. It was determined that each additional type of a specific learning disability, would thereby require separate program development. it is hoped that eventually a "generalized" system can be developed -- once a number of specific models are developed.

The Postulated Model of Learning Disabilities.

A second decision concerned the underlying assumption of the learning disabilities model to be used. ${ }^{\circ}$ The program developers concluded that a "Teaching to the Deficits Model". would be easiest to program initially. The framework for successful clinical-teaching was to first determine that child's areas of strangths and weaknesses; then to work on areas of deficits-starting with the lowest area. Improvement in this area became prerequisite for building the next area of deficit ir the hierarchy. The decision that a "Teaching to the Deficits Model" was assumed in the simulation was made known to the user.

A hierarchy of needed skills for Tony was determined. Several alternative Dathways for reaching the top of the hierarchy were planned. Each level of achievement was dependent upon improvement at the preceding level. To illustrate this hierarchy. Tony's severe deficit in auditory perception had to be built up to a certain level of performance before the deficit in phonics could be attacked. Areas of integrities were not included in this hierarchy. The user was told that task of the clinical-teacher in the simulation was to determine the hierarchy of skills that needed improvement.

The Irigaer and Booster concepts wers built in the hierarchy model. The assumption here was that within the hierarchy a prerequisite area had to build to a minimum level of proficiency before work in the next level would be effective. This is referred to as the "triger" concept as it triggered possible improvement in the next area in the hierarchy. However, before maximum growth in the next level could be attained, a still greater level of proficiency had to be reached in the prerequisite area. This was referred to as the "booster" concept.

The Behavior 'ndex was created because test scores are insensitive to small amounts of improvement. An index was needed that would be sensitive to
daily work that was eppropriate for the child. Clinicians were queried as to how they knew when the child was improving in a clinical-teaching situation. They responded that they noted the child's behavior improved -- he was more alert, interested, enthusiastic, had a longer attention spar,, was less restless, etc, These clinical observations were lumped together into a number called a "behavior index". As appropriate teaching strategies were used, the child's behavior index improved. Testing did not atfect the behavior index -. only appropriate teaching. The developers postulated that a "perfect behavior was ' 1000 ' ". Since. Tony had a learning disability his initial behavior was set at "500". With appropriate and efficient teaching it is possible to raise Tony's "behavior index" to "l00C" by the end of the twenty sessions of simulated clinical-teaching.

Length of the simulation. The p!an of the simulation was to simulate the clinical-teaching practicum at Northwestern University. This practicum lasts for one academic quarter (10 weeks) and the child receives instruction for a period of one hour two times per week. Therefore, in one quarter the child receives 20 one-hour clinical-teachirg sessions. The computer program was set up to simulate this setting. The twenty hours of simulated teaching could be completed in about one hour of real time.

Tests, Teaching, and Performance Levels. At each session the clinicalteacher could decide to teach or test. Initial performance scores in 17 different areas were determined by the program developers. The user of the simulation was unaware of the initial scores and had to determine performance levels through astute teaching and testing.

Determining Ouantitative Relationships. A number of relationships crucial to the simulation had to be detarmined by the program developers. One was the relarionship between time spent teaching an activity and improvement in performance. Another relationship between improvement in performance and improvement in the behavior index had to be determined. By reviewing the literature on learning disabilities remediation programs that reported pre and post-test scores over a similar period of time, the developers determined possible improvement in the various areas over a ten-week session. These scores provided maximum improvement in performance scores.

References for Clinical-Teaching_Simulation

Adelman, Howard S. "Learning Problems: A Sequential and Hierarchial Approach to Identification and Corrections: Part $11, "$ Academic Therapy VI, 3, Spring, 1970, pp. 287-292.

Chalfant, James, et. al., "An Enactive Method for Developing Independent Judgment in Learning Disabilities Trainees," Advanced Institute for Leadership Personnel in Learning Disabilities; Final Report. No. OEG-0-121013-3021 (031). Department of Special Education, University of Arizona, Bureau of Education for the Handicapped, Unit on Learning Disabilities, U.S. Office of Education, 1970, p. 32.

McCarthy, Jeanne M. et, al. "Basic Teaching Model for Special Education (Learning Disability Specialist)" from Advanced Institute for Leadership Eersonnel in Learning Disabilities: Final Report. No. OEG-0-121013-3021 (031). Department of Special Education, University of Arizona, Bureau of Education for the Handicapped, Unit on Learning Disabilities, U.S. Office of Education, 1970. Group Report, p. 53.

Reynolds, Maynard C. and Bruce Balow. "Categoreis and Variables in Special Education," Exceptional Children 38, January, 1972, pp. 357-366.

Robbins, M. J. et. al. "Strategy for the Preparation of Clinical Educators," focus on Exceptional Children, 1969, 1. 10-11.

Sabatino, David A. "The Information Processing Behavior Associated with Learning Disabilities." Journal of Learning Disabilities, !, August, 1968, pp. 444-450.

Sabatino, David A. "An Evaluation of Resource Rooms for Children with Learning Disabilities," Journal of Learning Disabilities, 4, 2, February 197!, pp. 84-90.

Schwartz, Louis. "A Clinical Teacher Model for Interrelated Areas of Special Education," Exceptional Children, 37, 8, April, 1971, pp. 565-572.

The Dasian and Implementation of the Clinicat Simulation

A general algorithm has been developed to simulate the "Teaching to the Deficits" model incorporating a hierarchy of skills to control development. Sixteen methods or skills were selected as skills pertinant to development. The clinical teacher (user of the simulation) can teach or test these skill areas and base his decisions on the computer-gererated feedback. Initial and final test scores were then estimated from reported research in the literature. The final test scores represent scores achievable only under perfect conditions. These scores provide boundary values for the mathematical solution of the model.

The behavior index is considered to be a function of the teaching done and is therefore a function of the test scores. Each method has a designated behavior index contribution associated with it: teaching the proper method at the proper point in the simulation, will produce an increase in the behavior index. Improper teaching will produce no change in the behavior index.

Bcoster and trigger concepts were used to control development through the simulation and to provide a simple methodology of describing complicated interrelationships between various teaching methods and their application to the specific case. It is an impossible task to describe in detail how each of dozens of possible teaching combinations could affect the test scores and behavior index. Booster and trigger concepts provide a simple and adequate method of Jescribing the situation.
irigger methods define the hierarchy of skills needed to fulfill the simulation. If the hierarchy of skills were depicted in tree-form, each
node would be a trigger -- you may progress further down the tree if and only if you have spent enough time on skills found higher in the tree. A typical hierarchy of skills appears on the next page. Notice that each branch is not unique -- some branches join together further down the tree. Fur thermore, skilis appear more than once in a given pain down the tree, and progress appears to depend on your posithof in the tree. The trigger concept eliminates the need to worry about exact positions in the system. Progress on a given method merely depends on progress alrgady made on other methods.

Booster methods control the rate of progress made through the simulation. Boosters help insure that prerequisite methods have been taught adequately. They provide the LD specialist a means of describing development in one skill in terms of other prerequisite skills.

A simple mathematical model has been developed to describe the simulation in terms of boosters and triggers. Two equations are solved each time teaching is simulated. First, a new test scores is computed:

$$
S=S_{0}+T S(t) B
$$

where ${ }^{S_{0}}$ is the initial test scores.
T is the trigger and is either zero or one.
$S(t)$ is the new test score due to teaching tadditional minutes.
B is the booster factor and ranges between zero and one.
Knowing the new test score, the behavior index contribution is computed:

$$
B I=B I_{0}+B I(S)
$$

where BI is the behavior index contribution.
${ }^{B 1}{ }_{O}$ is the initial behavior index contribution.
$\mathrm{Bl}(\mathrm{S})$ is the new tehavior index contribution due to the new test score.
This model is general in the sense that it is composed of functions. The trigger is a function of the method being taught and of related methods already taught. The test score is a function of the time already spent on the method taught as well as the additional time being added. The booster is a function of other test scores. These functions are arbitrary, but must be * selected to satisfy the boundary conditions of the simulation.

The current simulation uses linear functions in all of its calculations. simple list-processing techniques are employed in the trigger and booster evaluations. Since test scores result from the product of a series of linear functions they are fairly sensitive to teaching technigues. In actual application, improper teaching is quite obvious -- no behavior index change occurs. Proper teaching is usually rewarded with a generous boost of the behavior index.

TASK SYSTEM ANALYSIS
Tony S.

BOUNDARY CONDITIONS

Tony S.
$\left.\begin{array}{lccccc}\text { METHOD } & \begin{array}{c}\text { TIME SPENT } \\ \text { (HRS) }\end{array} & & \begin{array}{c}\text { TEST } \\ \text { INITIAL }\end{array} & \begin{array}{c}\text { SCORES } \\ \text { FINAL }\end{array} & \end{array} \begin{array}{c}\text { BEHAVIOR INDEX } \\ \text { CONTRIBUTION }\end{array}\right]$

The clinical simulation has beun written in two languages: FORTRAN subroutines do the test score calculations. The control program is written in LINGO a computer-aided-instruction language with strong response-checking capabilities. The simple structure of the model is reflected in the low cost of using the simulation -- less than two dollars for the entire twenty sessions in an on-line environment.

P. Cbasesmer

- Mactict ene48.

THIS IS CLIMAIM...
AMOTKER EXAKPLE OF
CENUTER APPLICATIONS
IN TNE LEARNING DISABILITIES
versian 103
MITTEM IN -LIMED-.
give vie ymor manco pleast 1 SMARON MERTEN

CLIMRCAL TEACHINE SIMULATIEN

THIS 18 a cemputer SIMULATIGN game To EmRAMCE YUS $2 \times I L L S$ IN CLIMICAL-TEACMINB.

Tony S.e act 10 os ans in emace tols

mesim man. Mis act -
me pear miles a chant
9. 10

RRENO
A TEN-YEAR ELD UCULD NORMMLIY EE IM CRNE S. TENY MAS RETAIMED EMEE IN ERADE 3.

TGNT CAMNTT KEEP UP WITH MIS WERK. his EIMAVIOR IS DISTUREIME TO OTMILRS. IF 19 IMATTENTIVE AND DERSN-T CEMPLITE MIS WORK. mis acadeyic recerds are not available FREM HIS PREVIGUS SCHOCL.

DE YOU KNGU HEW TO USE TMSS PRGERAM 1 HO

tappara3

SIMOLATED TIME
YCU G.AM UCAK HITM TEMY FER THE EOURVALENT * ELI NOROEMIE OUARTER. MEETIME THICE a meER FIn TEM WEERS. EACH SESSIEN IS G MIMTES LONE.

MOU MANY SESSIORS DO YOU GEET WITK TONY
P 20
VERY G0ct
ctractana

YgUR TASK, AS THE CLINICAL TEACNER.
IS TE IMPREVE TGNY-S ACADEMIC SKILLS
BEST COPY Avalla arif
AS RAPIDLY AS PGSSIBLE. EACH SESSIEN
PROVIDES YCU THE GPPORTUNITY TG
GIVE TESTS OR TEACH USING METHODS GR TO DO A CEMBINATI ON OF TEACHING AND -? TESTING RIGHT
TRY TO AMALYZE TENY-S AREAS OF STRENGTHS AND MEAKNESSES. MOTE THE PROGRESS HE MAKES AS YGU EE THREUGH THE SIMULATION.

ABSUPPT I TMS

ETVERAL ASSUMPTIONS WERE DESIGNED INTO THIS CLINICAL TEACHING SIMULATION

- APPRGPRIATE TEACHING IMPRQVES TGNY-S nEMAVIGR INDEX
- This 15 a teaching to the deficits medel
- A SPECIFIC HIERARCHY OF SKILLS IS ASSUMED

nanEAVY

YEU SMOULD TRY TG RAISE TRE BEMAVIER IMDEX FREM 500.0
T0 1000 .0 WAILE EBTAINING AN OVERALL IMPRQVEMENT
IN TgMY-S ACADEMIC SKILLS.
aOSUME YGU TEACH TENY PERPECTLY.
matat Is THE AVERAGE DAILY B.I. CHANEE
725
RIENT

* ${ }^{\text {apara } 6}$

DIRECTIONS
THIS PROGRAM RESPGNDS TO YOUR CGMMANDS TO -TEACK- GR -TEST -. WHEN YGU TEACH TONY, YEU MUST SPECIFY WHAT METHOD TO USE AND HOW LGNG TO USE IT, IN MINUTES.
-
THE COMMAND:
TEACR EPELLIME FOR IS MINUTES
whl came mai procman to simelere agencime legean is minutes lent. TEAEmimo
TGMY WILL RESULT IN A CHANEE IN HIS
gemavige. the cumalative gemavier imoex
TRE PRINFO AFFER. EACH TEACH CCMYAM IS TNE AMENO AND DIRECTIN OF THE GMANG:mecreas during teaching activitics.
mow many twimes de yeu have te include
In Yeur cenmitio to teach teny
13
RIG3-3
YOU EFLL THIS PPweran To

- mares
tir gemmai
TEAT PPELLIMB
mLL SIMULATE A SPELLING TEST
C IIVEN DHBATIMH (IS MIM FCR. SPCLLING).
TEATIME DEES MET EFPEST ERMAVIER.
EME IF DeEES SUDTRAGT TIME TMAT
CMLD BE UAED FER TEACHIMB.
EACH TESF HAS AN ASSECIATED ERADE
conte. ANo miat score is couputco
ATO PRINTE HREN YCU GIVE THE TEST CEMMAND.
HeU MANY ENIMES De YOU IMCLUDE
In Y Yese cenmand Te TEST Teny
71
mang. TWO
tanaks
YES MVET SPEEIFY -FEST- -TEST MANT-
TEAT SCENES SHCULD BE USED TO
KERIPY TGNY-S ACADEMIC DEVELGPMENT.
PLEADE REMEMDER THAT
A L L TEG EEtMES ARE A 6 E SOERES.
Alse.
PLEASE Netice that The tests ano methgos
MAVETMESANE MAMES.
manmins
YM WILL MAVE A CHOICE OF 16 methCes an it tests

MO.	- MAME	ABBR	test length	
1	AUDIT RAY PERCEPTION	(AP)	15 MIN	
8	Computatigu problems	(CP)	15 MIN	
3	EXPRESSIVE LANCUAGE	(EL)	15 MIN	
4	EYE TRAININS	(ET)	15 MIN	
5	LANE. EXP, APPRGACH	(LEA)	15 MIM	IAB
6	moter training	(MT)	15 MIN	
7	cral readime	(QRL)	15 MIN	cet COP
8	Phonyes	(PH)	15 MIN	BES
9	RECEPTIVE LANGUAEE	(RL)	15 MIN	
10	SILENE READING	(SR)	15 MIN	
11	SPEED READING	(SPR)	15 MIN	
18	SPELLIMG	(SP)	15 MEM	
13	TACMISDescepe	(TP)	15 MIN	
14	VISUAL PERCEPTIEN	(VP)	15 MIN	
15	WERD PREELEM3	(WP)	15 MIN	
16	WRITTEN EXPRESSION	(WEX)	15 MIN	
17	PULL 10 TEST	(10)	45 MIN	

TEAR OFF EHIS INTREDUCTIEN FOR LATER REPERENCE
PRES9 THE -RETURN- KEY WAEN YGU ARE READY
1

REMEMBER, STRIVE FGR AN O.V.ERALL IMPREVEMENT IM ACADEMIC SKILLS.

TYPE -EXPLAINS MAME-
PER AN EXPLAMATIEN OF A METHOD OR TEST.
CRT USERS GAN.TYPE -LIST- AND
RECEIVE THE LIST QF NAMES AT ANY TIME.
IF Y Y U HAVE DIFFICULTY USING THIS PREGRAM, TYPE -RELP-
** RESPGNSES ARE BEING RECRRDED ***

DAY 1
YU MAVE 60 MIMUTES
CMAVIGR IMDEX IS 500.0

```
Marye mave pinder commam
& fente
Ty% 6 sente Is il.0
YEU MAVE 4S mIMUTES LEPT
ccminame
- TESTI
TEGT : ScERE IS S.1
MN MAVE 30 MIMJTES LEPT
cemmal.
- TEAENI
**INMALIO COMmAM
* repplrame your command
P TEAcH. }
**IMNALID GOMMAMD
* REpharase yeur command
I TEACN AP
**imNALID Command
* (ol REPHRAEE YGUR CgmbuND
T TEAGH 1 }15\mathrm{ MIMUTES
ETHOD:
MN B.1. 18 516.7
Yug mave is m|mTES LEFT
    cmamav
    1 TEACME is mImuTES
    MTMOD }
    MW B.I-19 519.2
    YEOR TIME IS up
***@AY2
YES ARE DOZMO HELL.
LTS REVIEW THE CEMMANBS:
MME THE TWO GOMMAMDS YUU MAVE LEARNED
? TEST TEACM
M. -TEACK- AND -TEST-
*meTMERS
THRRE ARE SYNENYMS FER THESE GOMMAMOS.
PER EXAMPLE, YOU CAN TYPE
~UIZ SPELLIMG-
ANO
*THES 2 FAR 30 mImTES.
MLL TEAEM EXPRESSIVE LAMmANE.
```

```
8& YUU SEE. -OUIZ- IS A SYMENYM FRR -TEST-
    AND -METHED - IS A SYNONYM FOR -TEACH-.
(PRESS THE -RETURN- KEY)
$
**SYNTAX
-TEACH- CDMMANDS HAVE A SYNTAX.
Y(r mUST BE CAREPULL:8
TTEACH 30 MIMJTES OF EXPRESSIVE LANGJAEE-
15 N O T THE SAME AS
-TEACH 30 MIMJTES OF METHGD 3-*
**HMEN YBU USE A METHED N U MBER.
*&T MUST APPEAR B E F OR E THE TIMI.
(PRE8S THE -RETURN- KEY)
T
***OUIZ
mat CAUSES THE B.I. TO CHANEE.
-DESTINE- ER -TEACHING-
2 TEACHING
emed.
NO. -TEACHINB- ONLY.
***OUMMAR Y
BAY 2
YGO MAVE 60 MINUTES
BEMAVIOR INDEX IS 519.2
ENTER YGUR FIRST CGMMAND
? TEST4
TEST 4 SCGRE IS II -4
YGU MAVE 45 MIMUTES LEFT
CgmmaND
T TEACH I 15 MIMUTES
METHOD 1
NEW B.1- 19 535.8
YOU HAVE 30 mIMUTES LEFT
COMmAND
? TEST }
TEST 8 SCERE IS 6.2
YCU MAVE }15\mathrm{ MINUTES LEFT
CGMMAND
    T TEACH 8 15 MINUTES
    MTHED 8
    MWE.I. 18 543.3
    YMNR TIMS IS UP
```

mame
A LEN Cemmans:
fimiah pre day uith phenies-wiLl TEAGH DMONICS DURINE THE REMAININGTIME OF THE SIMULATED BAY.
 1 FINISH
ExACTLE.

A REMIMDERE-
THERE
-
EXPLAIM- -LIST-
taproumary
BaY 3
YOU.MAVE 69 mimTES
EmhVIC: Imezx is 543.3
CNBEA Yect PIRAT COMmAND
9 TESTYTEST 7 SCERE IS6.3
YOU MAVE 45 mimuTES LEPT
Cgnman
7 TEAOH . 15 MIMUTES
F'DM !
NEU B.I. 18 558:7
yeu mave 30 mimutes LEPT
ceinmars
1 TEACH 8 is minutes
LuTine 8
NEW B.I. 18 566.1
YEU BANE 15 MIMUTES LEMT
canrale
2 REACH 7 is MEMUTES
METMED 7
CHM BeI. 18 572.8
YME PITE 18 6p
${ }^{6}$ EST 2

Development and Teaching of a Course in Computer Applications in Learning Disabilities

The course in computer uses in learning disabilities and related fields was planned and taught during the course of this project. During the first year of the project, the content of the course was explored and discussed with a group of students from another course in Learning Disabilities who volunteered for a special section in which Fortran was taught and a number of related topics were aired. These students used the computer at the Vogelback Computing Center to run a number of programming assignments, each related to problems which might be encountered in Learning Disabilities. A FORTRAN workbook, containing information needed to solve these problems, was developed during this time.

The objectives of the course were outlined in the introduction, and include 1) development of an awareness and appreciation of computer technology, 2) levelopment of familiarity with ways the computer is being used in fields related tu Learning Disabilities, 3) development of the ability to clearly analyze problems which might be solved using the computer, and 4) the attainment of certain skills, discussed below.

It is our belief that the Learning Disabilities specialist does not need to know exactly how the computer functions, because few if any of those who take our course will ever have to deal with the internal functioning of any computer. However, mini-computers are prevalent in many fields, and we did ferl that specialists needed a brief introduction to the general functions of the major parts of the computer. For that reason, one or two lectures were devoted to explanations of the function $n f$ the central processor, various memory devices and the operating system of the CDC 6400 computer, in a very general way. The discussion could be applied to PDP/8 or other similar laboratory computers as well.

Students participating in the course were introduced to applications in two ways. First, a number of lectures were devoted to projects of various natiares, being carried out at Northwestern. During the summer quarter, a number of articles were placed on reserve, to be read by the students and discussed in class. These articles were to be reviewed in the light of the students' knowledge of the process of systems analysis and in the light of their knowledge of the field of Learning Disabifities. In addition, as students in the course finished individual projects, which were carried out with the help of the instructors, thev were required to give short reports during class time, which were discussfd and analyzed by class participants.

The students were initially introduced to the concept of Systems Analysis during the first week of the course. Systems; Analysic was pro-
posed as a tool which was to be used to attack (and seek solutions to) any problem, not only those which could be solved by computers. The general outline presented to the students included:

1) determination of the goals or objectives to be attained by any system under consideration.
2) criteria for determining whether a system is attaining its goals. These include concrete (usually quantitative) measures
3) an analysis of the resources available for building the system, and the constraints which would limit the possible solutions.
4) the construction of some sort of model for the system.
5) the review-process, by which a model is tested in order to determine whether it faithfully represents the "real" system, and can be used to test proposed solutions to a problem.

Each of these points was discussed at some length in class, in conjunction with a sample systems analysis (we used the structure of the university as the example). Throughout the course, whenever a problem was presented for solution, we returned to the Systems Analysis model to determine what was to be done.

- Finally, we set specific goals with respect to skills we expected each student to have at the end of the ten-week course. These were modified slightly after our initial experience with the winter-quarter course, so that the summer quarter goals would be more realistic for the students who were taking the course.

We emphasized "library" programs botin quarters. The advantage of a "library" program is that the specialist needs to do very little programming -- the program is already written, and the specialist need only adjust the format of his data to fit the program's input formats. During the winter-quarter, a number of students explored library programs at the Vogelback Computing Center, and used them in projects.

The largest use of library programs was the SPSS (Statistical Package for the Social Sciences), which we used for two weeks each quarter. Each student was supplied with data and formatting information, and was required to make a number of computer runs to analyze that data. The data consisted of test scores for 90 children from the Learning Disabilities clinic (all data was anonymous). Because the students had been introduced to formatting concepts during the Fortran portion of the course, we were able to concentrate on the other aspects of data-description and analysis. During the summer quarter, we changed the approach so that we did not cover Fortran, and therefore were required to discuss formatting when we reached the SPSS section of the course. We found a widely varying statistical background among our students. During the winter quarter, most students had enough statistical knowledge to be able to interpret the SPSS output reasonably well. However, during the summer, fewer students were acquainted with the statistics, and some difficulty was encountered. in a department such as ours, where a course which includes statistics is also available, it would be reasonable to expect all students to have some knowledge of simple statistical techniques before entering the computer course.

We found that the experience students had with writing their own programs (in BASIC or Fortran, during the first half of the course) helped them appreciate the concept of library programs, which had already been programed'and tested by other people.

Students were also expected to learn to write simple programs in the BASIC or Fortran programming languages. Our initial approach to this was to first teach Fortran, in class, to all students. This was done primarily to show the stude..ts how a programmer would go about writing programs to solve specific problems. A Fortran workbook was prepared and printed, and used both to illustrate programming techniques, and to present problems for solution by the students. Those students who were interested in becoming proficient programmers were given a separate class in Fortran each week, and those who were more interested in specific projects worked with the instructors on those projects during the same time each week. In this way we were able to tailor the content of the course to the needs of the individual students.

During the winter quarter, we emphasized Fortran. By the time of. the summer quarter, however, the Vogelback Computing Center had advertized the availability of BASIC language on the CDC 6400, and we took advantage of this, using the computer terminals provided by our project and by the department in the new communicative disorders building. We roncentrated on BASIC to the exclusion of Fortran during that quarter. Some of the comments we got at the end of the winter quarter indicated that students would have been happier gaining complete proficiency in a single language than gaining just a smattering of knowledge about two languages. During the summer quarter our students learned about BASIC using a workbook developed specifically for that furpose. The problems used in this workbook were similar to those in the Fortran workbook, and the content of each was related to specific problems from learning disbilities. The decision about the type of programming language to teach will vary from institution to institution, and our decision to use BASIC should not be taken as the last word. This was our choice because of its ease of use (it runs directly from a timeshared editor program) and because it is a simple language to learn. It contains statements or commands which represent all of the basic processing operations a computer can perform. BASIC will also be available to those graduates who work with institiutions or companies which have time-sharing services available to them, which we feel will be the case within the next ten years. Fortran was initially used because of its wide availability -- it is practically the only language which has been widely used at Northwestern, and mori people know how to program in Fortran than in any other languages. Institutions which have a large number of mini-computers available might even choose to teach an assembly-language, to acquaint students with basic computer coneepts, and to show them how data-gathering devices would be connected to the computer.

Students were introduced to other interactive languages in the course of their projects. One or more lectures were devoted to an explanation of the PLATO-IV and HYPERTUTOR Computer-Aided-Instruction systems. A number of students each quarter chose projects which involved interaction with students or professionals.

By the time the students finished learning the BASIC language, they were quite familiar with time-sharing as viewed by the user of the computer system. Time-sharing was explained in conjunction with the explanation of operating systems and computer structure. We found that some students were so interested in programming itself that they felt that these lectures were useless -- however, we feel that every student should be able to place himself in proper perspective with respect to the computer and to time-sharing networks. Our goal of helping students understand the costs and benefits of timesharing networks may help them deal with these systems when they must. but the student did not see the inmediate need for such an introduction.

By the end of the quarter, each student already knew where to look for more information at Northwestern. During the summer quarter, we conducted a tour of the Vogelback Computing Center, during which we introduced some of the people who are available to help with programming tasks. We showed the students where manuals and other publications are available, and gave them a short introduction to the indexing scheme. At the end of each quarter we introduced them to some of the major computer manufacturers and time-sharing services.

The course was taught by a team. of instructors. Dr. Lerner conducted sessions dealing with the simulations developed by this projeet, and discussed problems dealing specifically with learning disabilities. The introduction to programming was handled by Connie Hayes. Jim Schuyler presented SPSS and the computer system cuncepts. In addition, another staff member, Dr. Phil Freidman, participated in the course, advising students and conducting an introduction to SPSS during the summer quarter.

Students apparentl.y found it difficult to deal with this structure, primarily in the area of grading. Though we were felaxed about grading (trying to help the student concentrate on learning', about the computer rather than on when the next test would be), we found thac studencs needed a clear cut evaluation system. Working in individual projects seemed to be fine for a number of students, but some were worried about how well they were doing with respect to the rest of the class, and the projects provided little feedback in that area. We would recommend that the projects be carried out as we did, but that students be advised in advance whether their projects will be graded on amount of work, originality, etc.

The following page contains the course schedule for the summer quarter.

C07 Introduction to Computers in Communicative Disorders
June 26 T ORIENTATION- who we/you are - where are the computers and terminals - outline of course- questions
June 28 Th (JL) Systems Analysis - do an anal. as homework
June 29 F (JL/JS) Discussion of analyses.
July 2 M (CH) Flowcharts
July 3 T (JS) Intro to facilities at Vogelback Computing Ctr. cards, keypunching, terminals, submitting jobs, consultants, ref. manuals, library, etc.
July 5 Th (CH) BASIC - flowcharting a problem in preparation for programming on the computer
July 6 F (JS) How to rum programs on-line. Editing. This is the first LAB session. [in B230]
July 9 M (CH) BASIC programming
10 T
12 Th
13 F - 1 AB session - open from 10 to noon.
July 16 M (CH) BASIC programming continues.
17 T
19 Th
20 F LAB or QUIZ
July 23 M (JS) Operating systems and library programs. How they all commicate and fit together.
July 24 T (CH) SPSS - intro. to necessary statistics - typical outputs for various procedures.
JUly $? 6$ Th (CH/JS) Formats
July 27 F
Discussion of SPSS procedures and how to specify an analysis.
July 30 M (JS) Fither discussion and assignment to be made. 31 T
combined $\left\{\begin{array}{ll}\text { Aug } & 2 \mathrm{Th} \\ 3 & \mathrm{~F}\end{array}\right.$ (JL) CITNSIM \& Harvey simulations in Learning Dis.
Aug 6 M (JL) LAB B2요 $\mathrm{F} u \mathrm{n}$ Harvey or other simulations.
T T (WG) LAB/lecture - L.D. Materials file demonstration
9 Th (CH) presentation \& analysis of an article or case 10 F (jS) Computer Aided Instruction - PLATO slideshow
Aug 13 M () Digital/analog conversion - control of experiments $\left.\begin{array}{l}14 \mathrm{~T} \\ 16 \mathrm{Th}\end{array}\right\}\left\{\begin{array}{l}\text { Discussion of articles on reserve. } \\ \text { " }\end{array}\right.$ 17 F () "

REQUIRED: (by end of quarter) short (perhaps 3 pages) description of a real problem fincluding analysis, background. plan of attack a flowchart of ine system and solutions and perhaps a short program illustrating partial solutions.

- JIMSchuyler 2.156

Janet lerner
Conne Hayes $2-13{ }^{2}$

We found during the orientation that students generally knew nothing about computers when they began the course. Two students had used library programs before, but had not programmed.

The students were immediately introduced to systems analysis. We spent some time discussing an analysis of the University as a system, and talked a ruit how one sets limits on a system to be studied and improved. Each student was asked to analyze one system (and report results in writing the next day). These results were discussed as a group and any misconceptions were immediately cleared up. Systems analysis was used as the model for discussion of each problem during the rest of the course.

It was actually in conjunction with the discussion of systems analysis that model-building was brought up. We discussed models of many sorts, including trees, graphs, flow-charts, matrices, etc. We spent the greatest amount of time on flow-charts, because that is the type of madel used to represent systems most often when computerization is in mind.

Students were given an early introduction to the facilities of the Vogelback Computing Center, even though they would not be using the keypunches and other equipment until well into the quarter. At this time we also introduced them to the equipment located in the communicative disorders building, which would be used for on-line (time-shared) processing during the first half of the course.

The students were then given two weeks of intensive training in the BASIC language. This began with a discussion of the problem-solving process, from flow-chart to final solution using the computer. Students were asked to flow-chart a number of problems which were eventually to be solved using the computer and the BASIC language. A number of students used BASIC in individual projects, later in the course.

After student knew how to program, we introduced the concept of an operating system and time-sharing, so that they would understand (to some degrse) how the computer was actually processing jobs. There was not much emphasis on computer hardware, except for those parts which were important to the computer user. We did discuss time and cost of various information storage devices.

After a short introduction to the basic concepts underlying SPSS and library programs, we plunged into a week and a half of SPSS usage. During the summer quarter it was necessary to spend some time discussing fortran formats (because this is what SPSS uses to describe the position of its ciata on the cards). It was found that the students' knowledge of BASIC did not help them understand fortran formats at all. Following that, the students made their first SPSS run, usirg cards. They were aided at an initial laboratory session at the computing center. This made it very much easier for those who had never even seen a computer card, let alone used a keypunch. Students were required to make three SPSS runs, using different SPSS procedures, to analyze the data provided.

The end of the course was devoted to short lectures, explanations and demonstrations of projects both at Northwestern and elsewhere. The simulations developed during the first year of the project were being used in other learning disabilities courses, and were presented and explained in detail in this course. Some of the projects developed during the winter quarter were also explained summer quarter, including an information-retrieval system for learning dipabilities materials. The lectures and demonstrations on computer-aided-instruction were given during the last portion of the course, with a demonstration of the PLATO system at the School of Education.

The last week was devoted to analysis and discussion of a series of articles. These were analyzed in terms of what the students had learned from the course, and using the general systems analysis framework.

Du:-ing the winter quarter, a number of sessions were devoted to the presentation (by students) of project results. A number of students were able to complete interesting projects, some of which will lead to Masters or Ph.D. projects in communicative disorders. During the summer quarter, because of the shnrter duration of the course, the project were limited to descriptions of problems and short programs which might be used in an actual analysis.

Instructors at other institutions will have different attitudes toward the use of the computer in learning disabidities, and we suspect that a course such as ours could be modified by the addition of topics such as analogue/digital conversion, control of experiments, assomblylanguage programing, graphics, etr., as needed for individual institutions. However, the fundamentals of programing, problem analysis and description, library program usage and basic knowledge about what the computer can do, must be the core of any approach to computers in the learning disabilities.

Related Developments

This section explores some of the developments in learning disabilities which took place as a result of the project or the course. It Kegins with a discussion of student projects from the winter quarter of the course.

Learning Disabilities Diagnostic Simulation: Ken James
Abstract: To help the novice learning disabilities diagnostician understand the complexities of diagnosis, several cognitive elements of the diagnostic process were assembled in a computer simulation of a learning disabilities diganostic clinic. The program allowed the student to run through a simulated diganostic day in order to formulate a tentative diagnosis of a "prbgranmed" child. The diagnostic elements which were stressed in this simulation were data-gathering methods and techniques of analyzing those data. The diagnosis is then compared by the computer to the d.agnosis of the actual child as determinedby the Northwestern University learning disabilities center, and an evaluation is made. Explanation of the program used, and the discussion of implications of the project are also given.

Comment: This simulation by Ken James is an additional case which he programmed, to be added to the existing cases programmed as a part of this project. Ken wrote his program in the xUrOR language, which made it suitable for use on PLATO-IV.

A computer-aided-instruction program in apraxia: Christine Strike

A computer-aided-instruction program was written which helped à student explore and review the basics of anr.-ia. It was intended to be used by students, beginning speech , ınicians or by established clinicians who have never experienced treating an apraxic. The program is not detailed and covers only the broadest, most general characteristics of apraxia.

Comment: This program was primaxily multiple-choice questions. written in the TUTOR language. Students who learned TUTOR did so in addition to their experience with Fortran and BASIC.

Diagnostic case of dysfluent child: Robert Pierce

On this project. I devised a diagnostic case of a young dysfluent child. Information was gathered from report forms and testing on a child seen in our clinics: The information was categorized and filed on the computer under headings devised for use at Northwestern. Programming was done in the TUTOR language. This simulation was devised for use in a class on stuttering. Following testing, the student is to fill out a profile on the child. A prototype was included in the program. Feedback and evaluation comes from the professor as the profiles are discussed in class.

Comment: This simulation received much thought, and was apparently widely used in the department during the quarter.

Mental Retardation and Strength of Grip: P. Bannochie \& D. Gilbertson
We have data on approximately 1000 mentally retarded children who were given a strength of grip test. We will use SPSS to analyze the data.

Comment: The data was analyzed during the course using a numbex of the more sophisitcated techniques available through SPSS. A final report was given in class.

Analysis of speech: Dan De Joy
Samples of spontaneous speech have been collected from 10 four-year-old children, What is texmed a "loci" and a "non loci" approach on the childrens' normal dysfluencies is being employed. Each sentence seceives a syntax score, a length score, and a vocabulary score. The totals of these three scores will be computed and three averages derived. Then, Standard Deviations will be needed. Sentences wilil then be classified as follows. A sentence which has a syntax score less than one-half S.D. below the average will be classified as S_{1}. A sentence which has a score between $-1 / 2$ S.D. and $+1 / 2$ S.D. of the mean will be classified S_{2}. A sentence which has a syntax score greater than $1 / 2$ S.D. above the average will be classified as S_{3}. The same for vocabulary and length scores. Childrens' performances will be analyzed in terms of these S, L and V scores.

Comment: This study was expanded as the quarter progressed, and a final report was given to the class. The programaing was done entirely in the BASIC language.

Materials Search project: Wilson Guilianelli
Abstract: This program is designed to retrieve information. The information is material which is available to learning disability clinicians or any other teachers who wish to set up a remedial curriculum for a learning disabled child. All of these materials are to be found in the two materials resource rooms of the learning disabilities clinic.

The list of materials is kept on a separate file along with three part descriptions of each material. The first part of the description tells on which age group the material can be used (i.e. primary, two years to second grade; intermediate, second grade to sixth grade; and adult, sixth grade and up.) The second part of the description includes all the different abilities that the material stresses. By abilities I mean the areas of learning visual, auditory, receptive, cognitive, expressive, lonverbal, etc. There are forty-five different ability areas which describe the materials. The final part of the description concerns what school subject the material affects in
remediation.

The user of the program first gets on line in computer-aidedinstruction and asks for the program by name. The user is then asked three questions about the type of material he or she would like listed. One question is asked for each description of the material. The program then searches the long list of materials and prints out only those that pertain to the answers given by the user. All three descriptions need not be used. If the user wishes only a list of material pertaining to visual motor, he need only answer the ability question and type "none" in the other two. This can also be done if the user only wishes two descriptions for his material.

Coment: This project has now developed into a proposal to be made for funding. It would involve using the interactive computer system to provide materials searches for teachers in neighboring school districts, over a six month to one year trial period. The description which follows is that given by the author of the program, at the end of the winter quarter course.

BEST COPY AVAILABLE

The problem that my propram was to solve as: one of speed and accuracy. The materials of the Learnin Disabilities Slinic now number over two-hundred separate naterials and new materials are always beinf added. !he speed and accuracy problen co:aes in when a clinician is searchins the hure list of materials to find lhincs Which can be used in romediation of a particular case.

All these materials are on file and are catalorued urider various: hearings. This file of materials l:as made possible by lirs. Jans und a research prant which enahled her to classify and catarorize each material. The headin she used for her file cem: under three rencral catarories. The first set of filing healings concerncd are and her headinrs were primarv, intermediate, and adults. So, if a matrarial could be used for subjects from are two to the second rrade, then these materials fit under the primary headinp. loterials that could he used to remediate sulijecte rrom second to sixth mrad. wer elas:ificd interme•iate. Abuvs sixth rrade :ero adult materialc.

The second set of file headinms concerned which ahilitice the materials could be uerg to remediute. rin ra :ry ten horinme in tias set that she chose. They ere cornitive arocer:inm, lanruare, auritory processinr, spacial lesrninf, creativity, memary, tim. l... ruine, nonverbal learninm, und remediation(thich ie not an al ility it all r.at portains to those materials nith the eliuic:ian (in use for rofrence) The thiri clusir.r of hendiner: conmerns sehnol rul.i.nt Ernetio

 ran?ritine.

In stuaring this list of hearines you con see that oseh material culd he clacsified under more then ene herdine. A aini ian mev have a first rrader with visual perception yrolilems tho must b: tauct math. Instead of going into the materials roon and looking throuph hundreds of boxes for the rimht material, the clinicien would 10 to Mrs. Jan's card catalogue and look first under the primary section, then ser if she could crossreference the materials in the primary section with those in the math section and then out of those 'aterials which are in both the primary and math sections she would find how many pertained to visual perception makinf a third crossreference in the visual section of the card catalopue. If you are confused, imarine the feelines of the poor clinicirn:

Althourh th: card catalofue of materials :q:; a better system. than searching the materials room, Mrs. Jans thoupht a better system could be made using the computer. She also vanted a more detailed description of each material.' She 'anted the headincs broken down further by addine new and more detailed headines so not only would a certain material fall under the visual headine but it could also be found under headines of visuel reception and visual perception.

The problem was to take each material and decide which headines it would fall under. All the different headin-s that a matrial could come under became a description of that material. Sn, for example, a came which could be filed under the headinss of primary, copnitive, visual, reading, and language would he said to be described by that 'ist of headines. So, each material had a name and a description.

Of course, hefore we could describe each materinl o had to break down the old headines and redefine our ne: list of headines.

The are rroup herdings of orimary, int rmidiotr, and : inlt remined he same. The ahilitiy sroup headines in reased iro: bea fo lortyfive. Items like visural reception, visual perception, :יilitory reception, auritorv expreseions, eritical thinkine, rrol, em :olviner, visual-motor, sontax, ani auisitory, visuil ant vorhal on prehension sere added just to nime a fer: The hearinrs of 1 anmarre ys riroken 'om into expressive und r centive lanmare. T'is vas put into the suhject area roup vile more specific han nes af sutar, articulation, and formation if ineas took its lace in the :hility area. The
 in the subject aren for lark of a better ilace.

The subject area inrereased from seven herdines ton al:ost (wenty. raines like written laneuare, cursive and menuscript writin-, phonics, and itructural analysis vere added.

All the materials and their descriptions rere stored in a permenent file called ineeniously Tearnine Disabilitiss liaterials File. The neme of the material and description would nake ip a record on the file. The rescription \because :a:: in thre parts. All the hreadiner name of the description were divided into ace ability and subject so that the prorram can refer to any one of these three areas separately.
 RIQS stores and searchins the materials file vile LINsO explains the promram to the user, stores RIQS conmands, and allows for the flexability of the prorram.

The user mets on line in SAI and acks for the prorram called, "Tearninm Disabilities Katerials Tile" . IJfrro ther ares the user
thre qucstions; What ese level of matrrials do you lant? What ohility of meterials do on want? What subje t arrometrials do you want? The LINGO promam then recodes the :ns:-rs, :inco the material descrintions are corfect, and t en stores them. The LINo prorram has RIQ" search sommencis on a file. 'he srorrem tion jumps
 $\because \because$ II : commends itr it. The search i. then performed by the RINS prorram and the answers to the three nuestions arr ut into the file of RINS commands at t:e proner places to allow the search to retrieve the inte"ials which are desired by the usser.

I h:d mentioned that IINfO allows an emount of flexibility to the proeram. This is achieved throuch a LINGO conmand caled "THaSAURUS". This command contains lis!s and lists of synonyms. The theraurus allows tie us r to tym-in V. rinnre, in $2 R:$,

 for the sbilite of visual perception. "'his not only saver time ut is also eon enisht for t!n usur.

There is on other 0 ion to this erometn. If the user uncirr-

I helieve thet to prohleme of speed and cacurry ingo been overcone by this mirmram. Speed is anhieved in the sim!? ity :
 taken to serarh thrmell the file and in the necesse: ruse rerencinc. Accurecy and perision as achieved b: tie fect that tite materiel descri tionsere carried out in preater deteil then the descrintion of 10 ciari catslom. I bolieve thit thoue t-n moints attest to the value that this computer nromran could have for the masters students and ot! ers usin the clinic facility.

C.A.I. Phonics for Teachers Program

During the course of this project an additional program was developed which helps classroom teachers review the fundamentals of phonics.

This program was originally written in the LINGO language, which would have restricted its use to a small number of universities. It was later translated into the TurOR language, which made it available to users of the University of Illinois' PLATO network (including the Chicago campus of that universith. Northwestern, Purdue and Indiana University).

A sample of the interaction with that program is included below.

```
WHRT'S YDUR NWmit ?
T JIM
\squareK
WHAT 'S YDUR BACKSROUND ?
1...EXPERIEMCED TEACMER
2...PROSPECTIVE TEACNER
3...NEITHER
-? }
OK
YCU MAY PLWAYS RNSWER BY TYPIMS UDRDS INSTEAD OF MUMBERS.
THIS IS YDUR CHANCE TU BRUSH UP DN PHONICS BEFORE THE
THIRD GRADERS FIND DUT.
WHAT IS THE STUDY DF HHMPH SPEECM SOUNDS CALLED ?
? PHDNIES
MD
IT IS THE RNALYSIS OF PLL SOINDS.
ND
WHAT IS THE STUDY DF HIMMPN SPEECH SDUNDS CALLED ?
? PHDNETICS
OK
THE STUDY QF THE SPEECH SDUNDS IN THE SPDYEN LPNGIJAGE
DF THE ZUNI INDIPNS IS CPLLED ----------
? PHDNETICS
\squareK
THE RPPLICATION GF FMONETICS TO THE TERCHINS
DF READIMS IS CPLLED
? PHONIE:?
OK
IS "PHDNICS" THE STIJDY DF SDUNDS IN
(1) DRAL LANGUPEE, DR (こ) WRITTEN LRNGUPEE ? (WHIMH DNE??
? 1
ND
```


BESI COPY AVAILABLE

```
IS "PHDNICS* THE STUDY OF SOLMDS IN
(1) DRAL LANEUREE, DP (E) WPITTEN LPNGHPAE T 'WHIEH DNE?)
?2
IK:
PRDFESSDR HIGGINS: IN "MY FAIR LADY" ETLIDIED EITHEP
PHDNETICS DP PHDNICS - WHIEH DNE WAS IT %
? PHONETICS
ak:
THE LETTERS DF THE PLPMABET FMPE WPITTEN SYMBDLS
IF SPEECH SDUNDS. A WPITTEN SYMBOL DF P SPEECM SOUMD
IS CRLLED A -------- .
    \PHDNEME, MDPPHENE, GRAPHEME: SMMTRK DR DIPHTHDNG\
? PHONEME
ND
"GRAPH" MERNS "WRITTEN".
YIU RRE URONG.
? GRAPHEME
OK
THE BLPCK SRUIGGLY MPRNS DN PAPER RRE LETTERS.
LETTERS RRE NDT SIUNDS. WHEN LETTERS OR
CONBINPTIGNS DF LETTERS RRE WRITTEN TD REPRESENT
SPCKEM SOUNDS. TMEY PNE CRLLED "GRPPMEMES".
A "GRPPMEME" IS ...
1: A SPGKEN SOIND, DP 2) A WRITTEN LETTER PEFRESENTING SOUND
? 2
3k
THERE ARE YWO KIMDS DF SPEECH SDUNDS:
VOWELS AND CONSMNPNTS.
WHICH DNE IS DESCRIBED RS "PRODUCED BY THE
RESGMPNREE CHAMEEP FWD FORNED BY RN IINOBSTRUCTED
STREPN OF AIR IN TME ORRL CAYITY* ?
```


Evaluation

This section discusses the evaluation of the various phases of the program.

The first section deals with the evaluation of the diagnosis and clini-cal-teaching simulations; the second section deals with the evaluation of the course; and the third section deals with several related computer projects resulting from this project.

Evaluation of the Diagnosis Simulations

One aim of the Learning Disabilities Department at Northwestern is to train perspective learning disabilities specialists to diagnose children suspected of having learning problems and to plan and implement remediation once a diagnosis has been made. It was with this goal in mind that both a diagnostic and clinical teaching computer simulation were developed. With the implementation of these simulations, it was necessary to develop a tool for measuring both the general reaction of the class toward this method of instruction and the extent to which these simulations are in fact successful as an aid in teacher training.

Diagnostic Simulation

To evaluate the diagnostic simulation in terms of these objectives, two attitude questionnaries were constructed. The first questionnaire shown on the following page measured general reactions to the specific diagnostic simulation developed and used at Northwestern. As part of the course, Psychological and Educational Fvaluation of Learning Disabilities. The questionnaire was constructed using a Likert type scale. Each student was asked to place his opinion from strongly agree to strongly disagree on a seven point scale. The questionnaire was given to each student at the end of the course.

The questionnaire was given to 68 students. Thi.s represents classes held in four different quarters: September 1971, January 1972, September 1972 and January 1973. The questionnaire and results are presented on the following pages.

The student opinions expressed in questions four and seven show that the class felt strongly that the computer simulation was a useful technique for training teachers. The major criticism of the simulation was that the diagnostic information provided was not adequate for making recommendations to parents or teachers and for suggesting specific teaching techniques. This conclusion is based upon relatively low scores found in questions 2b and 2c. Further in class discussion some members of the class felt that a clinician depends on seeing and speaking to a child to aid him both in making a diagnosis and in planning remediation. As a result these students fourid it difficult to feel that they were working with a real child when using the "computer child". Yet, 69\% of the class viewed the case as a "real" child as shown in question 1.

Check the answar that moet closely ratso your oplaion on each quaction.

1 atrongly agree	2	3	4	5	6	7 otrongly no
		opiaion				
dicagree						

1. Throughout the various sesioloas, I falt as though I were working with a real child and his problems.

2. The diagnoscic information provided wae in a form that vae edequate for: A. formulatiag the diagnovs 2

1

b. making recomandicions to parenta or teachere

c. auggecting mpeedfic teaching techaiquas

3. The interactions of the mambers of the diagnostic tame scemad to realietically simulate the real group experience of working with a diagnootle ataff.

4. The aimulation approach increased my awareaces of various teace and che rolea thoy might play in a diagnoais.
1

4
5 - 6 6 7
5. The computer almulation hae aroused my interest in other powable uees of the computer in the field of laarning dieabilities.

6. I think it would be helpful to work through another diagnoatic aimulation.

```
1_ 2_ 3_ 4_ 5_ 6_ 7_
```

7. Overall, the computer simulation of the diagnontic procese te ueaful
technique for teacher training.

$$
1 \text { 2— } 3
$$

8. I have had some experience in a diagnostic clinic.

9. Purther comente, suggeations, criciciems, etc. (use back of page, if denired).

TAPIE I

RESULTS OF (IVERALL EVAIUATION OF SIAMU ATED DIACNOS IS

	Agree				lSisagree		
Question (ratings)	$\begin{gathered} \text { Strong ly } \\ \text { (1) } \end{gathered}$	Somewhat $(2-3)$	Total	No rpinion \qquad ' 11	$\begin{gathered} \text { Sitrongly } \\ (7) \end{gathered}$	somewhat $(1,-(1)$	lotal
1	20.6\%	48.5\%	6,9.1\%	1. $2 \cdot 0$	$\because 69$	$\therefore 0.0{ }^{\prime}$	29.4\%
2 a	17.6%	70.6\%	84.2\%	$\because \cdot 9:$	1. ${ }^{1}$! ${ }^{\prime \prime}$	7.4\%	1. 0%
2b	10.3\%	63.3%	73. 5%	--	1.1) ${ }_{\sim}^{\prime \prime}$	1.440	8.99\%
2c	10.3\%	56.4%	67.0\%	1.5\%	4.47	35.0\%	36.5\%
3	25.0\%	48. \because	73. 勺\%	10.3\%	$\because y^{\prime \prime}$	13.2\%	16.1%
4	44.1\%	勺0. $1:$	94.1\%	2. '19'9	---	$\therefore 0^{\prime \prime}$	3.0\%
5	39.7\%	48. P $^{\text {\% }}$	77.9\%	13. 2	-	8.80	8.8\%
ϵ	58.89	30.9 ${ }_{4}^{\prime \prime}$	87.14	1.5\%	1. \sim_{0}°	7. 1%	0.9%
7	58.8\%	3, 30,	94.17	1.10%	---	$7.4{ }^{\prime \prime}$	4.4\%

On the average the group of students with no diagnostic experience reacted more positively to using the computer simulation and in general had more "no opinion" responses than did those with diagnostic experience. the greatest difference in opinions between these two groups occurred on questions 2c and 6. The difference found on question 2 c , suggests that the inexperienced diagnostician depends more on objective information, such as test scores, when developing a remedial plan than does the experienced diagnostician. The results of question six suggest that the simulation approach in general is particularly beneficial to the inexperienced group.

The second questionnaire shown on the following page, was designed to measure the extent to which the simulation was an effective method of instruction, as well as to measure the extent to which the class could foresee the advantages of using the computer as an aid to learning. This scale was constructed in a manner similar to that used in the computer course attitide questionnaire discussed in the next section. in this questionnaire the student was required to choos between one of two statements. These statements were not always polar (as was used in the computer questionnaire) advocating opposite opinions, but rather often dealt with the same content but with a slightly different emphasis. We found that this format was not quite as successful a format as that used in the computer course questionnaire for it was difficult for the student to anchor his opinion (as.measured by the reliability coefficient obtained on the scalel and therefore more difficult to interpret the results.

The questionnaire was administered twice to all the students enrol!ed in the Psychological and Educational Evaluation of Learning Disabilities course. 't was first administered before introducing the diagnostic simulation to measure both the students understanding of the diagnostic process and their attitudes toward using the computer as an aid to teacher training. The same questionnaire was again givento the same group of students after they had had the opportunity to use the diagnostic simulation. i3y observing the attitudes expressed in both these pre and post-tests, it was possible to assess the extent to which attitudes changed.

Various statistical procedures were used to insure that the scale was maningful and that it was a reliable instrument for measuring attitudes. The MLI program was used to check the internal consistency reliability of the scale. A HOYT $R=.5290$ was computed by this program. This is slightly low but by using the reciprocal averages techniques a reliability figure of .7567 was achieved. The new weightings calculated by this reciprocal averages technique should be used in all subsequent administration of this scale.

To analyze the change of attitudes as reflected by the entire instrument a total score was computed for each student on both the pre and post-tests. We were able to compute these totals by weighting the alternatives of each question. The most desirable response or "ideal response" was always weighted five and the least desirable response was given a weight of one.

Student Background 'information (CHECK ONE)

Class: Undergraduate \qquad Graduate \qquad Special
Ma jor: L.D.__ Speech \qquad Hearing Impaired \qquad Educ.
Psych \qquad Other (Specify) \qquad
Any Diagnostic Experience? Yes \qquad No
Have you been enrolled as a student in the Northwestern Diagnostic Clinic?
Yes \qquad No \qquad
Have you taken D88 Educational and Psychological Evaluation at N.U.? Yes \qquad No \qquad
Have you had any computer experience? Familiar with computers \qquad
None \qquad A computer course \qquad

Each item consists of two alternatives, A and B, between which you are asked to choose by circling one of these indicators:

A - Statement A is entirely preferred to Statement B as an
expression of my opinion
a - Statement A is somewhat preferred over Statement A
? - 1 cannot choose between A and 3
b - Statement B is somewhat preferrid to Statement A
A - Statement B is entirely preferred to Statement A as an expression of my opinion

A a : b 9 I. A.	It is possible to create a "computer child" with learning problems similar to those of the children who are seen in our diagnostic clinic.
B. A "computer child" can never had' the same type of	
learning problem as a real child.	

A a ? b B 2. A. Diagnosing a "computer child" is a good technique for teaching perspective l.d. specialists about the diagnostic process.
H. Classroom lecture and discussion is the best technique for teaching perspective'l.d. specialists about the diagnostic process.
A a ? ba 3. A. I can think of several ways in which the computer can be 54321
used to aid in the field of lid.
the only kind of computer application in the field of
ld. is the use of the computer as a technique in
teaching diagno tic procedures.
A a ? b i2 5. A. Inly standardized tests should be used when diagnosing 11511 a child suspected of having a learning problem13. One can adequately make a diagnosis by using the casehistory and various other reports and informal tests.
A a ? b 13 o. A. An intercisciplinary team approach to diagnosis is that 54533 individual opinions and experience are merged into a group diagnosis.B. A highly verbal and strongly opinionated member of aninterdisciplinary team is likely to irifluence thedirection of a group diagnosis.
A a ? b 4 7. A. Time is a scarce resource that must be considered in planning a diagnostic procedure.B. Time should not be considered when making an adequatediagnosis of a learning problem.
A a? b 8. A. A diagnosis which results from interpretation of test 54321 results should also lead to recommendations for a remedial plan.
B. The diagnostic process is separate from the remedial analysis.

Statistical Analysis

NULL HYPOTHESIS
The students enrolled in the course titled, Psychological and Educational Evaluation in Learning Disabilities exhibit no change in attitude regarding the use of the computer in teacher training and the understanding of the diagnostic process involved in studying a child suspected of having a learning disability after completing the diagnostic computer simulations used as tools for instruction in this course.

STATISTICAL TEST

A correlated T-Test was employed.
Significance level
A. 05 level was chosen as the probability level at which the null hypothesis was to be rejected. The analysis was performed on 19 cases, although there were more students who used the diagnostic simulations. We were not able to obtain complete data on the other students. RESULTS

We used the Statistical Package for the Social Sciences (SPSS) T-Test subprogram to analyze the data collected. From this program, we found a significant change in attitude in the positive direction (or direction of "ideal response") at the . 006 level. This means that generally after completing the diagnostic computer simulations that the class felt more convinced that a computer simulatinn and the computer in general have a place in teaching perspective learning disability specialists than before completing the simulation and further the questionnaire indicated that through the use of the diagnostic computer simulation that they were ableto learn about the diagnostic process.

Variable	I\# of Cases	Mean	SD	SE	CORR	$\begin{gathered} \text { 2-Tail } \\ \text { Prob } \\ \hline \end{gathered}$	Value	DF	2-Tail Prob
Pre	19	30.31	3.53	. 809					
Post	19	31.68	2.75	. 631	. 847	. 000	-3.15	18	. 006

By using the MLI and cross-tabulation option of SFSS, we were further able to study each question of the scale individually and assess the attitude changes as reflected by each question as well as by the instrument as a whole. From this analysis, we found that questions two and four were the most reliable both had a relability. figure of above .60. As measured by the Fishers Exact Test, there was no significant change in attitude at the . 05 level on any individual question. In the tables below, we have presented in tabular form by question, the percentages of positive and negative responses. We have defined positive attitudes to be the se which are in the direction of the "ideal response" while negative attitudes are responses in the opposite direction of the "ideal response". In some questions of this a no opinion
response was considered a positive attitude while in others a negative attitude. The appropriate classification for each question will be indicated in the discussion below. We further subdivided the positive attitudes into those who entirely agreed with the "ideal response" and those who somewhat agreed. We have presented two tables below. The first depicts the opinions of the entire class, and the second compares those whe have had diagnostic experience to those who have not. looking at the composite table, lable I, one notes a general shift in the positive direction from pre to post test in all questions but number three where there was no change in the proportion of positive and negative opinions. Interpretating the runs of the SFSS computer programs (Table G) both the group with diagnostic experience and the group without diagnostic experience, showed an increase in positive attitudes. By using the Mann Whitney U Statistic we noted that that was a significant difference in attitudes between those two groups on both the pre test (. 02 level) and post test (. 002 level , generally the group with diagnostic experience, thus, expressed more positive attitudes.

Looking at each question in terms of its"ideal response" we find:
QUESTION I
"Ideal Response"
It is possible to create a "computer child" with learning problems similar to those of the children who are seen in our diagnostic clinic.

We have developed a number of different diagnostic simulation cases which can be used as teaching tools. For instance, Harvey (the case we first developed) simulates a child who has an auditory protlem. During the quarter, the members of the class had the opportunity to work through both of these cases. We hoped that by using more than one simulation, the class members would see the possibility of creating computer simulations studying children with a wide range of learning problems, problems similar to those of children who are seen in a clinic. We found that 94.8% of the class felt that the computer child can be sreated with problems comparable to those of the children seen in our clinic. o

QUESTION 2
"Ideal Response"
Diagnosing a "computer child" is a good technique for teaching perspective learning disabilities specialists about the diagnostic process.

Although effective learning is accomplished through classroom lectures and discussions, they do have their limitations, for the members of the class come to the course with varying backgrounds and therefore have varying educational needs. Hecause of these differerces, $i \pm$ is difficult to find the appropriate level of instruction for one always runs the danger of boring some students and losing others. A diagnostic computer simulation is an aid in solving this problem. It offers the more experienced student an opportunity to practice his skills on a great variety of cases that he might not study even in : clinical course and offers the less experienced student the opportunity to learn from those with more experience without impeding class progress. this gives the inexperienced diagnostician, the opportunity to ask more questions than he might otherwise not ask during classroom lectures.
TABLE 1

TABLE 2
ヨyI甘NNOILS3nO y

Question	PRE-TES T				POST-TES T				Change in Positive Attitude
	Positive			Negative	Positive			Negative	
	Entirely Erefer	Somewhat Prefer		Total Negative	Entirely Prefer	Somewhat Prefer	Total Positive	$\begin{aligned} & \text { Total } \\ & \text { Negative } \end{aligned}$	
I Diag No Diag	$\begin{aligned} & 53.8 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 30.8 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 84.6 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 32.4 \end{aligned}$	$\begin{aligned} & 53.8 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 46.2 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 83.3 \end{aligned}$	16.7	$\begin{aligned} & 15.4 \\ & 16.6 \end{aligned}$
$2 \begin{aligned} & \text { Diag } \\ & \text { No Diag }\end{aligned}$	$\begin{aligned} & 79.9 \\ & 16.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 23.1 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 56.7 \\ & \hline \end{aligned}$	32.3	$\begin{array}{r} 53.8 \\ 16.7 \\ \hline \end{array}$	$\begin{aligned} & 38.5 \\ & 83.3 \end{aligned}$	$\begin{aligned} & 92.3 \\ & 100 \end{aligned}$	- 7.7	$\begin{array}{r} -7.7 \\ 43.3 \end{array}$
33 No Diag 	$\begin{aligned} & 61.5 \\ & 16.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.5 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 66.7 \end{aligned}$	33.3	$\begin{aligned} & 69.2 \\ & 16.6 \end{aligned}$	$\begin{aligned} & 23.1 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 92.3 \\ & 83.3 \end{aligned}$	$\begin{array}{r} 7.7 \\ 15.7 \end{array}$	$\begin{array}{r} -7.7 \\ 16.6 \end{array}$
$4 \begin{aligned} & \text { Diag } \\ & \text { No Diag }\end{aligned}$	$\begin{aligned} & 53.8 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 30.8 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 84.6 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 15.4 \\ 50.9 \\ \hline \end{array}$	38.5 -	$\begin{aligned} & 53.8 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 92.3 \\ & 50.0 \end{aligned}$	$\begin{array}{r} 7.7 \\ 50.0 \end{array}$	7.7
$5 \quad$ Diag No Diag	$\begin{array}{r} 53.8 \\ 33.3 \\ \hline \end{array}$	$\begin{aligned} & 23.1 \\ & 65.7 \end{aligned}$	$\begin{aligned} & 76.9 \\ & 100 \\ & \hline \end{aligned}$	23.1	$\begin{aligned} & 46.2 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.5 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 84.7 \\ & 100 \end{aligned}$	15.3	7.8
$6 \quad$ Diag No Diag	$\begin{aligned} & 23.1 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 38.5 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 61.6 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 38.4 \\ & 50.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 46.2 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 46.2 \\ & 33.4 \end{aligned}$	$\begin{aligned} & 92.4 \\ & 66.7 \end{aligned}$	$\begin{array}{r} 7.7 \\ 33.3 \end{array}$	$\begin{aligned} & 30.8 \\ & 16.7 \end{aligned}$
$7 \begin{aligned} & \text { Diag } \\ & \text { No Diag }\end{aligned}$	46.2	$\begin{aligned} & 38.5 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 84.7 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 15.4 \\ & 33.3 \end{aligned}$	61.5	$\begin{aligned} & 38.5 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 100 \\ & 66.7 \end{aligned}$	33.3	15.3
8 Diag ${ }^{8} \begin{aligned} & \text { No Diag }\end{aligned}$	$\begin{array}{r} 76.9 \\ 83.3 \end{array}$	$\begin{aligned} & 15.4 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 92.3 \\ & 100 \end{aligned}$	7.7	$\begin{aligned} & 92.3 \\ & 100 \end{aligned}$	7.7	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	-	7.7

The results show that 94% of the class felt that diagnosing a computer child is a good technique.

QUESTION 3

"'deal Response"
can think of several ways in which the computer can be used to aid in the field of Learning Disabilities.

Although the purpose of the diagnostic simulation was not to teach the class about computer applications, we hoped that even with this limited exposure, the class members might see the possibilities of using the computer in other ways.

Generally there was a slight shift from a somewhat positive to an entirely positive opinion, although there remained a 10.5% negative opinion from pre to post test.

QUESTINN 4

"Ideal Response"
It is possible to present a greater variety of learning problems with a computer simulation approach than a learning disabilities student would be likely to experience in a clinic course.

Although effective learning is accomplished by real life clinical experiences, they too have their limitations. They are expensive in terms of clinic space, student time and supervisory personnel. If students make errors, thay may be costly for the children involved, if the student is closely supervised to prevent such errors, he does not have an opportunity to learn through his mistakes.
further within a one quarter clinical course, the student is apt to see only certain types of cases, many of whom might have similar learning problems. 3y using a computer simulation, the student can study a greater variety of cases and in less real time than one would spend in the clinic for with the simulation, one need not wait for a child to complete a test. He need only request the test and the score is immediately available. There was only a slight shift to the positive direction, a 5.2% change.

QUESTION 5

"Ideal Fesponse"
Standardized tests, case history information and various other reports should be used to develop an adequate diagnosis of a child suspected in a Learning Disabilities.

Children with learning disabilities are a hetergeneous group. the wide range of both deyree and type of learning disability requires a diversity of diagnostic techniques. We would hope that by performing the diajnos, tic simulations that class members would find that it is necessary to have both
standardized test information and some informal information. We would expect the class to express a "I cannot choose between the two alternatives" on this question. There was a 89.5% positive opinion expressed in answer to this question. This means that 10.5% of the class expressed an opinion which was at one extreme or the other. It is interesting to note that negative opinions were expressed by the group with diagnostic experience. (ine can hypothesize that this resulted because of the biases that might develop with experience.

QUESTION 6
"Ideal Response"
An interdisciplinary team approach to diagnosis is that individual opinions and experience are merged into a group diagnosis.

One of the goals of the diagnostic simulation was to show the members of the class that both experienced and inexpe ienced diagnosticians with varying strengths and backgrounds, can work together and develop a group decision. We expectied on the pretest that those without diagnostic experience might expect that a highly opinionated and verbal member of a group might unfairly influence the direction of the group. From the table, one can see that this is exactly the results we obtained. We found that 50% of those without experience did indeed express negative attitudes on this question of the pretest. After the diagnostic simulation experience, however, 66.7% of this group (those without diagnostic experience) expressed the opinion that a group decision can be obtained by an interdisciplinary approach; while 89.5% of the entire class felt positively.

QUESTION 7

"Ideal response"
Time is a scarce resource that must be considered in planning a diagnostic procedre. in the diagnostic simulation cases, the staff sees the child for one day, three hours during the morning and 2 hours during the afternoon.

The diagnostic simulation was designed so that only three hours of information during the morning session and two hours of information during the afternoon session are released, even if a team overestimates the amount of time required to administer the tests that it requests. It is for this reason that the staff must schedule its time carefully so that it may receive all the information it needs for preparing a diagnosis. The class generally felt that time was a scarce commodity. (inly lo.5\% stili had negative opinions on this question after completing the diagnostic simulation cases.

QUESTION 8

"'deal Response"
A diagnosis which results from the interpretation of test results should also lead to recommendations for a remedial plan.

As part of the simulation, each student was required to make decisions regarding the teaching strategies that he would use in a remedial program for
the child under study. Each student had to choose from some 60 possible techniques those which could appropriately be used for the child and indicate why they should be used. The entire class realized the importance of using the diagnostic information as an aid for developing a remedial plan. he biggest shift from pre to post test can be seen in the entirely preferred : deal response column.

Two versions of the computer simulation have been developed. One version is run as a batch job, which requires a days turn around time and therefore the student does not receive the information that he requests until the following class period, and the serond version is run using the on-line facility of the computer where the student receives the information that he requests immediately at the computer terminal. The on-line version is particularly good for those students who enjoy doing the diagnosis individially. We were interested in determining which of the two versions the class iound more helpful and therefore we asked the following question:

I would prefer using a diagnostic simulation which would give me immediate feedback. OR 1 would prefer using a diagnostic simulation which would allow for class discussion.

This was not used as part of the attitude scale discussed above but was a general interest question. The results were as follows:

	PRE-TES T			FCST-TEST		
	Indiv.	No (pinion	Croup	'ndiv.	No 'pinion	(roup
Composite	10.5	5.3	84.2	15.8	-	84.2
Diag	7.7	7.7	84.6	15.4	-	84.6
No Diag	10.7	-	83.0	16.7	-	33.0

We therefore conclude that most students preferred the batch version of the simulation, where diagnostic information was not received until, the following class period. From the results we also find that the shift in opinior, to the version which gives immediate feedback can be attributed to the group of students who have had diagnostic experience.

Costs

Computer costs for running the interactive simulations are proving to be quite inexpensive, making the use of these simulations quite practical. he following costs in running the programs were ellcountered at liorthwestern's vogelback romputer Center.
Average cost
Totalper student
Batch Processing
Program CREATE \$1.05
Program SIMCASE 1.17 $\$.05$
(Decision 1) - 5 Teams
Program SIMCASE 1.00 04
(Decision 2) - 5 Teams
25 Students
Program DIAGNOS 1.00 04
(Decision 3) - 5 Teams
25 Students
Program TEACH 1.61 07
(Decision 4) - 22 Students
Shared-Time: Diagnostic Simulation (ON-LINE)
2 $\frac{2}{2}$ Hours of Real Time -1.41 20
2 Teams - 7 Students

Interactive Computer Simulation

1. Evaluation of the Simulation of a Diagnostic Clinic.

To evaluate the diagnostic simulation, a group of practicing and certified learning disabilities specialists was asked to spend a day going through the various parts of the diagnostic simulation of the diagnosing process to evaluate feasibility, practicality, and realism as a training technique. In addition to the diagnosis simulation, they participated in several other computer-learning disabilities activities during the day.

The evaluation session was held on Saturday, December 11, 1971 at the Vogelback Computer Center of Northwestern University. The schedule of activities for the evaluation sessions is shown below.

Schedule of Activities for Evaluation Session.

9:30-10:15 a.m.	Orientation: Janet Lerner Decision l. Making diagnostic decisions for oimulated morning clinic session.
10:15-10:4! a.m.	Computer Uses in Learning Disabilities: James A. Schuyler
10:45-11:30 a.m.	Decision 2. Making diagnostic decisions for simulated afternoon clinic session.
11:30-12:00 noon	C.A.I. Time-sharing Computer-Assisted-Instruction Program. Using PHONICS for teaohers.
12:00-12:45 p.m.	Decision 3. Formulating the diagnosis.
12:45-1:30 p.m.	Lunch. Interim evaluation.
1:30-2:15 p.m.	Discussion of the diagnostic decisions of the various teams. Decision 4. Selection of teaching techniques.
2:15-3:00 p.m.	ON-I.lN: incuinction computer simulation of diagnosis process. Uaing time-sharing terminal.
3:00-3:30 p.m.	Fianl livalualion.

Description of the Evaluators

The public schools of Des Plaines, Illinois, agreed to participate in the evaluation activity. The Des Plaines school district is a large district located northwest of the city of Chicago. This district was selected because it has one of the oldest and best-established learning disabilities programs in the area. The learning disabilities program serves children from kindergarten through high school and learning disabilities teachers in .ais district come from a variety of backgrounds and many different educational institutions. Six teachers volunteared to act as evaluators. The teachers were randomly divided into two teams.

The following educators participated in the evaluation:

1. Mrs. Estelle Bradley	Reading/Learning Disabilities Coordinator
2. Mrs. Rita Deiengonski	Learning Disabilities Teacher
3. Mr. Harold N. Harrison	Learning Disabilities Teacher
4. Mrs. Marian S. O'Neil	Learning Disabilities Teacher
5. Miss Janet G. Pigman	Learning Disabilities Teacher
6. Mrs. Jo Szcaesney	Learning Disabilities Teacher

The participating evaluators filled out a Ciata Survey form. The following summary describes the background of the six evaluators.

Certification

Number
Certification in Learning Disabilities 6
State of Illinois
Elementary K-9 (Illinois) 4
Elementary K-12 (Illinois) 2
Supervisory (K-14) 1
Adult Education 1
Experience
Number of years in regular education Rangı: 0-25 Average: 8

Number of years in special education Range: 1 - 16 Average: 6

Graduate Education
Ranse: From some graduate work to Ph.D. candidate. ir:iluate vilueation receivad nt 5 different colleges mad undvacalilis.
Areas of training.
The evaluators were asked to specify areas of intensive training. The following areas were indicated.
Area of Intensive Training Number
Learning Disabilities 6
Elementary education 6
Reading 4
Special education 4
Psychology 2
Counseling 2
Motor development 2
Language and Speech pathology 1
Arithmetic 1
Neurology 1
Early Childhood 1
Secondary education 1
In addition, the evaluators were asked to rank their own areas of interest and strength from a list of 12 areas. The following selections were made: Areas of Strength
Highest Ranking
Number of evaluators

Selecting it

Reading
3
Learning Disabilities 1
Special Education 1
Early Childhood1Second H2ghest Rank
Learning Disabilities 2
Special Education 1
Arıthmetic 1
Elementary Education 1
Reading 1
Third Highest Rank
Special Education 1
Kicalines: 1.
Pswollolary
l:aily thilllhoud1
Nucrolugy 1
Secondary Education 11

We would like to obtain your opinions concerning the Interactive Computer Diagnosis sessions. Please rate the following questions. We would appreciate any additional comments and suggestions you might have.

1. How would you judge this method as one technique, among others, to teach the process of diagnosing learning disabilities poor excellent
a. for college students in learning disabilities programs? 1 _ $2^{3} 3^{4} 5^{6}{ }^{7}$
b. for learning disabilities teachers as part

Comments
2. How likely do you think the type ot case very \quad likely \quad unlikely you worked with would be among children in a typical learning disabilities program? \qquad
Comments
3. How would you judge this technique as a
simulation method for exposing students to group interactions in professional staffings?
poor
excellent

Comrents

4. Do you think that it would be of value and interest for other learning disabilities specialists to spend a day similar to today's session?
no value $1-2-3-4-5-6-7$

Comments
5. Do you think it would be valuable for students to work through another diagnostic no viace very case on an individual basis, using the ON-LINE terminal?
\qquad 2 3 4.5 h 7

Comments

6. Do you think that working through a case would be a fair examination for students in a Diagnosis course?................ 1

Comments

7. Would you he interested in learning more
about the computer and learning disabilities:

Comments

\qquad
nverall comments, suggestions, criticisms

Evaluation Summary

Several different evaluation approaches were used. 1) An evaluation instrument was designed using a Likert-type scale. Each participant completed the form (See chart A on following page). 2) The decision-making sessions, as well as the evaluation session, were taped. 3) Detailed notes were taken during the oral evaluation session. These will be summarized below.

Summary of Teacher Evaluation of Simulated Diagnosis Question 1.

How would you judge this method as one technique among others to teach the process of diagnosing learning disabilities?
a. for college students in learning disabilities programs?
b. 'for learning disabilities teachers as part of the "in-service" course?

Rating scale: 1 through 7 (poor-1-through excellent-7).
Ratings of Evaluations
Number
Part a. Rating 7
5
Rating 6
1
Average Rating 6.8
Part b. Rating $7 \quad 5$
Rating 61
Average Rating 6.8

Question 2:

How likely do you think the type of case you worked with would be anong children in a typical learning disabilities program?
Rating scale: 1 through 7 (very likely-l through very unlikely-7). Ratings of Evaluations Number

Rating 14
Rating 2 - 1
Rating $3 \quad 1$
Average rating 1.5

Question 3.

How would you judge this technique as a simulation method for exposing students to group interactions in professional staffings?

Rating scale: 1 through 7 (poor-1 through excellent-7)

Ratings of livaluations
Rnting 7
Number
Ractang 6
Mating 3
Rating 5 I
Aumpaper ratiop r.,

Question 4.
Do you think that it would be of value and interest for ocher learning disabilities specialists to spend a day similar to today's sessions?

Rating scale: 1 through 7 (no value-1 through very valuable-7).

Ratings of Evaluations
Rating 7
Rating 6
Average rating 6.8

Question 5.
Do you think it would be valuable for students to work through another diagnostic case on an individual basis, using the ON-LINE terminal?
Rating scale: 1 through 7 (no value-1 through very valuable-7).

Ratings of Evaluations Number
Rating 7 5
Rating 6
Average rating 6.8

Question 6.
Do you think that working through a case would be a fair examinaison for students in a Diagnosis course?
Rating scale: 1 through 7 (yes-1 through no-7).

Ratings of Evaluations
Rating 14
Kating 2
Rating 5 l
Average rating 1.8

Question 7.
Would you be interested in learning more about the computer and learning disabilities?

Kating 1
Average rating 1

Evaluation of the Course

The specific objectives of the introJuctory computer course as set down by the Special Projects Application Proposal made in August, 1972 are:

1. To develop an awareness and appreciation among students of what is happening to computer technology and in this way to develop an open attitude towerd computers and their uses.
2. To develop the ability to clearly analyze problems and - reduce them to a form easily handled by the computer.

Therefore with the introduction of this course in January, 1973, it was necessary to develop a method of evaluating it in terms of these specific objectives. To evaluate the computer course in terms of the first objective, an attitude questionnaire with multi-level responses was constructed. The scale used a polar choice format, where each question aas a choice between two statements, dealing with the same content, but with one that advocated the pro position and the other the con. This required the student to locate his attitude on a scale anchored by a statement at each pole. The question is shown on the following page.

The questionnaire was administered twice. It was given to all the students who were enrolled in the course on the first day of class to measure theclass attitudes before taking the course and the same questionnaire was again given on the last day of class to measure class attitudes at the end of the course. By studying both the pre and post tests results, we were able to effectively evaluate attitude change.

Various statistical procedures wer used to insure that the scale was meaningful and that it represented a reliable instrument. The Modified Language input (MLI) was used to measure the internal consistency reliability of the scale. MLI was developed at Nortiwestern with the assistance of Dr. Phillip Freidman. This program computes a HOYTR as a measure of reliability and calculated a. 7097 figure as a measure of the i.nternal consistency of the questionnaire that was used in this analysis. This figure indicates reasonable reliability of an instrument that measure attitudes. Using the reciprocal averages technique a reliability of .8463 was computed. The new weightings computed by the reciprocal averages technique, should be used for all future administrations of this attitude scale.

To analyze changes of attitude as measured by the entire instrument, the alternatives of each question were weighted. The most desirable or what was considered the "ideal response" was weighted 5 and the least desirable response was given a weight of I. A total score was then computed for each student for both the pre and post-tests and using these scores a statistical analysis was performed to determine whether attitudes had in fact changed.


```
    Eduza:xra___ Othar (mecify)
```

\qquad

``` -
```

 \qquad Feadilar
 cheoce by cireling one of chese indicatore:
 uy opinion
n - Stotemeat Λ is somewhat peaferred over Statespent B
? - I cranoc cheose beatreen A and B
b - Stateras:t B ia zocmitat praferred to Statement A
3- Statamert B ia cutirely proforrad to statement A as am expraeaion of my opinion

A a 3 b B 1. A. I mould not ba hasitent to use the computer in my research
B. I would be hesitane: : to use the comppter in my research studies or in my job.

A a 2 b B 2. A. I would feel hesitent in aking a cosuputer congultent for asalatence in solviag a problem.
B. I would not ba hesitent in asicing a computer conaritent for cosintence in soiviag a problem.

A a i b 8 3. A. I do feel that the computer has a good use in the Eleld of laarning disabilities and in ralated tilalds.
B. I do not feal that the computer has a good upe in the field of loarning diabbilities and in related fielda.

A 23 b 4. A. I hava some ideas of how tha computar cen be used by peopla in the field of learning diaebilities and in related fialds.
B. I hava no idea of how one would use the comprater in the ficid of laarning disabilitics and in related tields.

A $\quad 7$ B 5. A. I sould prafar to analyee my atatiatical date uaing a computer (54321) progran.
8. I would prefer to analyse my statiscical deta using a calculator.
 afsilar to the one fown at the Northresterp Computing Center.
B. If I mare to uee a computer, I would not be concoxned with the type of couputar I was uaing.

 interuat.
B. If ce: asj, i rigid ba afrofd to get involvad in aseiacian in the cavelop:an:t of coupheor epplicatione relating to wy fiold of interaat.
A. a i b B i. A. Oniy ihise who have a mathomatical talent olunde get involvod in (12345) the atuds of eamputere.
B. Anjogdy with an interest in computer uses should yot involved in
omaing its tectnology.

A a 1 b 9. A. I foel that computer axperts are aager to ansiat thone who axy ismpertenced.
B. I feel that compretor anparte do not anjoy assiating those who ase inasperimeen.

A a 2 b B 10. A. I feel that one mast be a computor opectallot to plam comprear appilcations in a Eicld auch as lavenforg diachelistion.
(12345)
B. I feel that somone tho rarely hat a basic undorntending of the cupabilities of the computer cem plew corputer applicelelons in a flold such at laming dieabilitice.
 trize a graneral coupriter coursea.
B. I vould not be healtene to enter a dopurtment visch requicel that I tube a gemarni evapucer couree.

B. I feel thet no error in my progren could anse a eonputer falinge.
 conputer to solve micmenote aashgnines.
B. I mould mot conaldar dropplag a cource thich required ma to wee the curriter to colva mo hominoric asellymante.

B. I would not coundier a job vith on ongenieathom rilch micee eutemalve vet of the competer as an ald to diagmonit and remedition.

B. I voula never conaldor haypmehing my own rasoareh data.

Statistical study

NULL HYPOTHESIS: The students enrolled in the Computer Course exhibit no significant change in their attitudes toward computers after completing the course.

STATISTICAL TEST:

Since each student was given both the pre and post test, it is safe to assume that their scores may be correlated and it is for this reason that a correlated t test was used for the analysis.

SIGNIFICANCE LEVEL

A . 05 level was chosen as the probability level for rejecting the null hypothesis. The analysis was performed on 15 cases, although there were more students enrolled in the class. We did not have both pre and post test scores on the other students.

RES ILTS
Using the Statisitical rackage for the Social Sciences (SFSS) T-test subprogram developed at Northwestern, it was found that there was a significant change in attitude in the positive direction or in the direction of "desired response" at the .001 level. We feel from these results therefore that the introductory computer course did contribute to encouraging an open attitude toward computers and therefore that we have met the first objective as set down in the Special Projects Application. We do however, realize all the limitations of such an interpretation. We know that in this kind of design, one group pre-post test, that there are many factors such as history cevents other than the class presentation which encouraged changes in attitude) and the effect of the instrument itself (the fact that the answers might simply reflect what the class felt was expected and not a true expression of opinion) which effect the internal validity of such an analysis. However, we feel that this was the best method of objectively studying attitude change that we had available.

By using both the output from the MLI program and from the cross tabuiation option of cirs, we were able to study each auestion of the scale individuall. and assess attitude changes not only as measured by the entire ins, ument but also by specific questions. n the lable below, we have presented in tabular form the percentages of positive and negative responses on each suestion toth on the pre and post tests. ositive attitudes are defined as thase in the direction
table 3
RESULTS OF COMPUTER ATTITUDE QUESTIONNAIRE ADMINISTERED TO THE STUDENTS OF CO7

QUESTICN	- RE-TES T				POST-TEST				$\begin{aligned} & \text { CHANGE } \\ & \text { IN } \\ & \text { POSITIVE } \\ & \text { ATTITUDE } \end{aligned}$
	Fositive			Negative	Positive			Negative	
	Entirely Prefer	Somewhat "refer	Total Fositive	Total Negative A No Opin	Entirely Frefer	Somewhat Prefer	$\begin{aligned} & \text { Total } \\ & \text { f:ositive } \end{aligned}$	Totel Negative \& Nio Cpin	
1	26.7\%	33.3\%	60.0\%	40.0\%	86.7\%	13.3\%	100\%	-	40.0%
2	53.3	20.0	73.3	26.7	53.3	6.7	60.0	40.0	13.3
3	66.7	13.3	80.0	20.0	80.0	20.0	100	-	20.0
4	13.3	66.7	80.0	20.0	93.3	6.7	100	-	20.0
5	53.3	33.3	86.6	13.4	93.3	6.7	100	-	13.4
6	13.3	40.0	53.3	46.7	13.3	53.3	66.3	33.3	13
7	33.3	26.7	60.0	40.0	53.3	33.3	86.7	13.3	26.7
8	40.0	33.3	73,3	26.7	53.3	46.7	100	-	26.7
9	20.0	13.3	33.3	66.7	20.0	33.3	53.3	46.7	2.0 .0
10	6.7	53.3	60.0	40.0	40.0	60.0	100	-	40.0
11	60.0	40.0	100	-	100	-	100	-	-
12	0	14.3	14.3	85.7	28.6	21.4	50	50	35.7
13	45.7	40.0	85.7	13.3	86.7	6.7	93.3	6.7	6. 6
14	26.7	53.3	80.0	20.0	60.0	33.3	93.3	5.7	13.3
15	26.7	66.7	93.3	6.7	45.7	53.3	100	-	6.7

of the "ideal response" while the negative attitudes are defined as those responses of no opinion or with an opinion in the opposite direction of tre "ideal response". It is obvious from looking at the table that attitudes are primarily in the positive direction even on the pre test. this was expected as the course was not a required one and therefore only those students with essentially a positive attitude toward the study of computer technology would consider enrolling in it. We further discovered from our analysis that questions one and thirteen are the most reliable, each of which had a reliability figure greater than . 70. As measured by the lisher's [xact lest, there was no individual question where there was a significant change of altitude at the .05 level from pre to post test. It should also be noted that only in question two was there a shift to a less desirable response from pre to post test. this will be discussed further below.

Looking at each question in terms of the "ideal response" we find:
QUESTION I
"ideal Response"
would not be hesistant to use the computer in my research studies or in my jo.s.
' n the past students ir h is department of Learning Disabilities have not extensively used the statistic omputer programs available at Northwestern to analyze their data. Where i... data required simple calculations, they performed the analysis by hand or on an electronic calculator. nften they would hire computer consultants to perform analyses which required complex calculations and they rarely even considered such techniques as factor analysis which are best performed on the computer. We hoped that after completing the introductory course that we would find that our students would louk forward to doing theit own computer work and that in this way they would be encouraged to use some of the more complex statistical techniques which are best performed on the computer. We found that from pre to post test 40% of the students enrolled in the computer course changed from a negative position on this question to a positive one and that after the course the entire class felt that they would be willing to use the computer in their research or on the jot.

QUESTICN 2

"Ideal pesponse" would not be hesistant in asking a computer consultant for assistance in solving a problem.

We were hoping tlat by asking the students in the class to run their jobs at Northwestern's Computing Center, that they would become more familiar with its facilities and with the professional assistance one can obtain there. y looking at the attitude's expressed in this question, where there was a shift to negative opinions, we can only assume that some of our students had unpleasant experiences while working their assignmerits. !he result on this question scemr., however, to contradict those found on questior 9 which has a sitmilar underlying concept, the request for assistance. We can only assume that the terms computer consultant and computer expert are important to the opinions expres.ed
in these questions. We should note that the computer consultants at the computing center are students themselves and that they might not be as willing to help as those who consult in other environments.

QUESTION 3

"Ideal response"
I do feel that the computer has a good use in the field of learning disabilities and in related fields.

A considerable portion of course was devoted to discussirg the ways in which the computer can be used in other than scientific fields. For instance, the students were shown how the computer can be used as a tool in diagnosis or how computer simulations can be used effectively as an aid in instruction. It would appear from the results that we successfully exposed the class to verious computer applications for the entire class felt positively with regard to this question after completing the course.

QUESTION 4

"I deal Response"
have some ideas of hciw the compster can be used by people
in the field of learning disabilities and in related fields.
The comments regarding question three also apply here and the fact that 100 of the class also felt positively on the post test on this question further supports the interpretation we presented above.

QUESTION 5

"I deal Response"
' would prefer to analyze my statistical data using a computer program.
During the course we not only assigned computer programs which were to be written by the student himself but we also required that he run some package statistical programs such as Si'SS so that he might see how easy it is to analyze his data by computer. After completing the course we found that 100% of the class felt that they preferred using the computer to using a calculator for statistical analysis. ihis further supports our interpretation of question 1.

```
QUES:'CN 6
```

"ideal l'espunse"
f were to use a computer, ' would not be concerned with the type of computer 1 was using.

We wanted to direct the class discussions to computers in general and not specitically to the ror, 6400 that is used by the studerits at liorthwestern.

We were interested in teaching the students that all computers are easy to use and that similar packages are available on all computers.

Although there was a slight shift in attitude in the positive direction, the shift was not as great as we would have liked. 33.3% of the class still preferred using a CDC 6400. We were happy to see, however, that only one person actually said that he would only use a $\operatorname{CDC} 6400$.

QUESIION 7

"Ideal Response"
If asked 1 would not be afraid to get involved in assisting in the development of computer applications relating to my field of interest.

It is important when developing computer application that one have both a computer expert and a subject matter expert working on the development and implementation. It would be ideal if one person had both capabilities, however, most often this is not the case. We hoped that through class discussion we would encourage more of our students to get involved in application development and implementation. After completing the course, 86.9\% of the class felt that they would be willing to assist in the development of computer applications which is a significant change from the opinions expressed on the pre test where only 60% expressed positive opinions.

QUESTION 8

"Ideal Respense"
Anybody with an interest in computer uses should get involved in studying its technology.

We wanted to dispel! the myth that only individuals with a special talent for mathematics can be successful in computer studies. We wanted the class to learn there are various levels at which one can studv computer technology and that one need not possess any real talents to study computer technology at the basic level. lle need only have an interest in doing so. We found that entire class expressed the opinion that interest is enough.

QUESTION 9

"Ideal Mesponse"
feel that computer experts are eager to assist those who are inexperienced.

The comments made regarding question two apply to this question also. t would appear from the responses to these two questions that on the whole the class members are still not generally eager to request assistance from computer professionals.

QUESTION 10

"I deal Response"
I feel that someone who merely has a basic understanding of the capabilities of the computer. ian plan computer applications in a field such as learning disabilities:

The underlying concept of this question is similar to that found in question seven, that subject matter experts should not be afraid in getting involved in developing computer applications and that development does not necessarily mean that one must have the technical expertise needed for implementation. There was a great shift in opinion from pre to post test on this question. On the post test, the entire class felt that one need only have a basic understanding to flan computer applications while only 60% of the class expressed this opinion on the pre test. It would appear from the results on question seven and ten that we were successful in encouraging the members of the class to get involved in computer applications.

QUESTION 11
"Ideal Response"
I would not be hesistant to enter a department which required that
I take a general computer course.

In general we assumed that even on the pre test the members of the class would answer this question in the positive direction. This was indeed the case with 100% of the class expressing positive opinions on the pre test. it is interesting to note, however, that of this 100% only 60% were entirely certain that they would enter a department which had a curriculum that required their. students to take a general computer course while of the 100% which answered positively on the post test, all log\% were entirely certain. We feel that this indicates that we were successful in developing a course which presented material at the appropriate technological level.

QUESTION 12

"Ideal Response"
l feel that no error in my program could cause a computer failure.
We were interested in teaching the class about both the interdependence and the independence of the computer operating system and the compuier prom grams written by the student. Most beginning programmers feel that through their programs that thay can direct the operation of the computer that errors in their programs can in fact even cause computer failures. The general inexperience of the class is reflected by the opinions expressed by them on the pre test. More of the class expressed negative opinions on the pretest on this question than on any other on this attitude questionnaire. dy the end of the quarter we were able to change the opinion of 35.7% of the class.

QUESTION 13

"Ideal Response"

- I would not consider dropping a course which required me to use the computer to solve my homework assignments.

The underlying concept expressed in this question is similar to that expressed in question II, that the student should not fear studying the computer as part of their academic program. 93.3% of the class felt positively on the post test and there was a shift from pre to post test of 40% from prefer to entirely prefer.

QUESTION 14
"Ideal Response"
1 would consider a job with an organization which makes extensive use of the computer as an aid to diagnosis and remediation.

We feel that with the technological revolution created by the computer. a Learning Disabilities Specialist, more than ever before is likely to find himself applying for positions in hospital clinics and other agencies which make use of the computer. Our department is interested in preparing our graduates both psychologically and academically, to accept positions in such institutions. We found that 93.3% of the class would consider such a position ar that there was a 33.3% shift to the entirely preferred opinion from pre to post test.

QUESTION 15
"ldeal Response"
l would consider keypunching my own research data.

We tried to show the class that keypunching was no more difficult than typing and it appears that we were successful and that the class did not find keypunching difficult, for they all felt that they would consider keypunching their own research data.

To further study class opinion, we asked the members to comment on the open-ended question, "What was your over all reaction to the introductory computer course?" Here are some of the comments that we received. In general, the members of the class felt that the course was worthwhile and a valuable learning experience. 't would appear from the comments that the students were particularly interested in programming and computer applications and less interested in learning about computer hardware.

To evaluate the computer course in terms of the second objective !to develop the ability to clearly analyze problems and reduce them to a form easily handled by the computer) we are including some of the compute. problems designed by members of trie class and also some of the projerts that they actually completed.

The class was divided into twu groups, those who were interesterl in learning FORTRAN and those who had personal computer projects they wantor to
complete. The class met as a whole two days a week and was divided into these two groups for the remaining class meeting. Those students who chose to learn FORTRAN were required to complete three rORTRAN programming problems and to design a problem which they feit could effectively be solved by computer, either using FGRTPAN or some other computer language. Everyone was able to complete the assignments "with minimum assistance. The actual assigninents and example solutions as completed by the class members are included below. Also included below are three of the original problems designed by the members of the class. the problems relate to the fields of learning i)

COURSE EVALUATIONS

I generally feel that the course was a worthwhile one, especially considering the experimental nature of the course. I do, however, have some suggestions whir.h might serve to make the course lietter fat least for someone like mel if it is taught again.

First of all, 1 would have liked to do more work with r.es and sasic. 1 feel that my knowledge of these areas is far from complete. : erhaps less time could have been spent talking about the mechanice of the computer system itself, (something we rarely come into contact with and more time spent in discussing the capabilities of SFSS and Basic.

The same is generally true of FORTRAN, but 1 realize that seldom does, one (even complete) course furnish the perspective programmer with all the tools of this language.
! guess what l'm trying to say is that yes, have a general understanding of these three systems but don't feel entirely competent in any. ''erhaps this is all ' need, though, for my present work and for my later research.
. I enjoyed the informal nature of the class and the class participation. Also, I enjoyed my contact with the computer (even when it didn't run my frograms the way : would have liked) and feel much more confident about my "analytical" abilities.

Havi ig known relatively nothing at the beginning of the course, 1 can now safely say : have learned something, in fact I must boastfully" say "a great deal."

Now for a consideration of the course itself. (iverall the course began at a great pace. I think proper consideration was given to those of us who knew nothing and 1 really mean this, it was important that we not be scared away . . . which we weren't.

The lectures and assignments for basic language were good, and the decision to use the basic first was a good one. it "warmed" us up to the confrontation of St 'SS.
: wish more demonstration of programming would have taken place. that is, more of a lab atmosphere within the class. 'erhaps once a week one session could be devoted to presenting a problem to be solved by the group in the language being studied at that time. A few on-line terminals could be available.

I thought the weekly group meetings were exce!tent. I personally learned a great deal about FORTRAN and it was becal se the 'r?iran lertures were relevant to programming problems. There was, a freedorn to make a "fool" of oneself if a question was a bit elementary.

Frankly, the last third of the course was weaker.t. I would have preferred discussing and analyzing problems and their interpretation into language than be exposed to "national digital analogue proyrams". Hence the lectures toward the end faded. Cest la vie!! More practice in class would have been helpful.
 happy that ' was given the opporturity to prograr. wi, fome, as. the morit
valuable portion of the course. Further, the workbooks were excellent.
My criticisms would include the following:

1. The last weeks of the course dealt with subjects that 1 had little interest in. This would include discussion of computers in the U.S.A.
2. More specific work was needed on the section of Sf'SS.
3. Orher library programs, including some introduction to the ! MD system should have been included.
4. It appeared that the ob jectives of the course and a clear course outline had not been clearly formulated at the beginning of the quarter. While understand that this is the first year for this course and further, while 1 am not opposed to courses with flexibility, it seemed that assignments were thought up, or altered at the spur of the moment. This was not fair to the students.

The course was useful in giving us exposure to several languages and in allowing us to try out various ideas. Before this course 1 had not given much ser:ous thought to using the computer in C.D. The two fields seemed as far apart as possible. However, the course made me see that not only are computers -elevant in many subfields, but in a few years they will be relevant in everything we do. Discussions of other computers, incompatibility, and the. like served to show how widespread computer technology is. I now feel that a new level of "literacy" is required - that of being literate on a computer.

The course was not relevant to the program if iflyou read was the desription. This is a real drawback. If people only knew how important this area is !!! !hen I view research buing done by the "unenlightened" I feel like I have travelled back in time. (See last paragraph below)

No fault could possibly be found with ccurse organization. It was very well organized and taught.
'f somehow we could make this course NECESSARY for all doctoral students (at least) it would be a great thing. If some, even devious, way could be found to make computer "literacy" a requirement, this course would get a real boost. It would well become the most takion course in the Speech School.

This was the most refreshing course ' 've had in ygars. Perhaps its the change of pace from heavy reading, but the organization and ectures certainly added to my en joyment. Frankly, the content was more than I expected. 1 really think that we covered a lot of ground and amazingly, were able to become relatively proficient in several techniques. I really feel very comfortable about using the computer now. Yes, Connie, the fiow charts should precede the programming.

I think this was worthwhile experience and 1 tent to be a skeptic. . . All in all it was a good experiment.

This course really shouldn't have been Compu.ir Applit:ations in Com Dis but just programming 1.

I felt that the course was well organi":ed and well taus' . I would have liked to have gone into BASIC in a little more detail. 1 felt that someone was always willing to help me with a problem on my project or to irrovite
sources of information for further interest on a topic. 1 felt that l learned quite a bit in the course, although 1 thought that having a background in rORTRAN made certain aspects of the course boring. I was glad of the additional exposure to computers and programs as it made me less frightened of them. On the whole, 1 thought the course was very good.
feel the course offered a variety of bits and pieces from several areas related to computers. That is, we learned some programming, some information about the computer system and something about how computers can be of practical use.

F'ersonally, hadn'texpected much programming to be taught and would have preferred a greater emphasis on CAI and computer applications. However, the way the class was handled left a great opportunity for the student to enlarge upon the area he was interested in - which is good - and with such a variety of interests and backgrounds, necessary!!

This was a valuable learning experience. In terms of the outline of the course, would have liked to have covered some other languages in the formal class setting. I felt that 1 really learned a lot from the course. When : entered the class ! knew nothing about computers or computer programming. Now I feel I have a basic understanding of how l could utilize a computer service in research. In terms of instructional techniques, ifelt that the section of how a computer operates could have been explained in a clearer manner. I really enjoyed this course.

The class seemed to be at first disorganized, at first - whs was to what, when, how --- after some initial trial and errors things though picked up - considerably. I would have liked to see more demonstrations, use of audio visual materials to explain content, i.e. slides, overhead, etc.
l liked the idea of individualization, and individual projects. 1 would have liked to have had more time for individual needs in solving problems, lab sessions.

The instructors were positive and enthusiastic in their approach and they knew what they were talking about - especially Jim, l liked having special speakers on various topics.

1 was/am a little vague on evaluation (grades).
I learned a lot. I knew nothing when i came to the class about computers. :he class was beneficial to future research.
! think the course was very interesting, and useful. I particularly appreciated the fact that it involved both an introduction to programming in more than one language as well as general background regarding computer software and hardware.
' considered the instruction to be very adequate. And 1 felt that 1 benefited greatly. The course did very definitely accomplish ihe goal of introducing the wide variety of opportunities for computer applications.

1 took the course for the purpose of doing some kind of project on my own. I learned three new languages, I began to feel comfortable with on-line processing and I did a project which 1 believed was valuable. ' learned much from doing my project and enjoyed doing it.

My expectation of this course was that 1 would learn different ways of applying the computer to Ccm Dis. and that 1 would try some unique application myself. My expectations were met.

That's how the course applied to me. Trying to be objective, 1 think that there was enough programming, there was a wide variety of options which compliment the wide variety of backgrounds of the class.
! found the course. to be challenging, as 1 had previously had no computer experience. I am leaving the course with a knowledge of where to " look in order to apply computer to problems. I found the workbooks to be quite helpful in explaining procedures. ' feel more confident in programming, although in the case of FORTRAN 1 find that 1 rely heavily on referencing, in the workbook each step along the deve lopment of the program. 1 would have been interested in doing more work with SPSS than what was talked about during class time.
feel now both a need and desire to study computer applications further.
Excellent course - I feel the varied interests and computer experience of the class members was handled well by interest groups. I would have liked having a little more experience with SPSS as well as FORTRAN, and perhaps use of BASIC by interest only. Project reports were helpful.

Frogramming experience was valuable.
Generally! feel I learned quite a bit, and do not dread using the computer for my dissertation as ! had prior to the course.

My only complaint was with the few lectures on the computer availabilities, ' thought they might have been condensed irto fewer lectures allowing more class sessions for lab.

Cne other suggestion is to have computer terminals available on Saturday, and evenings for those of us with schediling problems.

1 believe that you should state that some knowledge of statistics would be helpful. I also believe some suggested readings should have been offered. No matter what my letter of evaluation of work done in this course, 1 know that I have learned a great deal a most important to me is on improvement in my ability to think through a problem step by step.
received more than my share of assistance from everyone. I enjoyed putting myself through the wringer of hard work.
en joyed getting the prugramming information of RASIC, FCRTRAN, Tutor, as well as SPSS and the on-line experience. I feel the handouts on the prom gramming methods were good.

1 feel the major question is how important to us was the last few weeks of class. In doing a project in iutor ! missed the experience with the FORTRAN labs. ' feel : would have liked to have gotten both. ihe information covered ifi the last few weeks ' don't firid too helpful.
 done more programming for experience.

Supplementary Information (appendices)

CONTENTS
page
Chart 1. Diagnostic Information Available Al
Decision 1 Form A5
Sample Output--Decision 1. A6
Decision 2 form A8
Sample output--Decision 2. A9
Decision 3 FormA 10
Sample Output--Decision 3. Al2
Decision 4 Form A17
Sample Output--Decision 4. A20
Programs
Version 1 Program (Batch) A22
CREATE program (Batch) Version 2 A25
SIMCASE program (Batch) Version 2 A27
DIAGNOS program (Batch) A33
TEACH program Batch) A35
Simulated cases for Diagnosis A43
Time-shared Interactive Diagnosis (on-line) A63
WORKBOOK for BASIC programming
 60 minutes
2. WISC Information
3. WISC Similarities
4. WISC Comprehension
5. WISC Ari*hmetic
6. WISC Vocabularly
7. WISC Digit Span
8. WISC Picture Completion
9. WISC Picture Arrnagment
10. WISC Block Design
11. WISC Object Assembly
12. WISC Coding
13. WISC Mazes
14. Stanford-Binet Intelligence Scale. 60 minutrs
15. Illinois Test of Psycholinguistic Abilities (entire test). 90 minutes
16. ITPA Auditory Reception
17. ITPA Visual Reception
18. ITPA Visual Association
19. ITPA Verbal Expression
20. ITPA Manual Expression
21. ITPA Grmmatic Closure
22. ITPA Visual Closure
23. ITPA Auditory Sequential Memory
24. ITPA Visual Sequential Memory
25. ITPA Auditory Closure
26. ITPA Sound Blending
27. ITPA Auditory Association
28. Detroit Tests of Learning Aptitude. (entire.test). 144 minutes
29. DTLA Pictorial Absurdities
30. DTLA Verbal Absurdities
31. DTLA Picuorial Oppo:ites
32. DTLA Nerbal Opposiles
33. DTLA Motor Speed
34. DTLA Auditory Attention Span for Unrelated Words
35. DTLA Oral Commissions
36. DTLA Visual Attention Span for Objects
37. DTLA Orientation
38. DTLA Free Association
39. DTLA Designs
40. DTLA Auditory Attention Span for Related Syllables
41. DTLA Number Ability
42. DTLA Social Adjustment
43. DTLA Visual Attention Span for Letters
44. DTLA Disarranged Pictures
45. DTLA Oral Directions
46. DTLA likenesses and Differences
47. Frostig Developmental Test of Visual Perception (entire test). . . 25 minutes48. Frostig Eye-motor Coordination
49. Frostig Figure-zround Perception
50. Frostig Form Constancy
51. Frostig Position in Space
52. Frostig Spatial Relationships
53. Beery-Butenica Developmental Test of Visual-Motor Integration . . 20 minutes
54. Goodenough-Harris Draw-A-Man Test 10 minutes
55. Heath Railwalking Test. 15 minutes
56. Purdue Perceptual Motor Survey Test. . (entire test) 55 minutes
57. Purdue Walking Board
58. Purdue Jumping
59. Purdue Identification of Body Parts
60. Purdue Obstacle Course
61. Purdue Kraus-Weber
62. Purdue Angels-in=the-snow
63. Purdue Chalkboard
64. Purdue Rhythmic Writing
65. Purdue Ocular Pursuits
66. Purdue Visual Achievement
67. Purdue Imitation of Movement
68. Picture Store Language Test 20 minutes
PSLT Productivity--Total Words
PSLT Productivity - Words per Sentence
PSLT Productivity - Total Sentences
PSLT Syntax Quotient
PSLT Abstract-Concrete Scale
74. Peabody Picture Vocabulary Test. 15 minutes
75. Templin-Darley Trst of Articulation. 15 minutes
76. Wide-Range Achievement Tests 30 minules
77. WRAT Spelling
78. WRAT Arithmetic
79. WRAT Reading
80. Vineland Social Maturity Scale. 5 minutes
81. Gates-Russell Spelling Diagnostic Tests (entire test) 60 minutes
82. Gates-Russell: Spelling Words Orally
83. Gates-Russell: Word Pronunciation
84. Gates-Russell: Giving Letter for Letter Sound
85. Gates-Russell: Spelling one-syllable
86. Gates-Russell: Spelling two-syllable
87. Gates-Russell: Word Reversals
88. Cates-Russell: Spelling Attack
89. Gates-Russell: Auditory Discrimination
90. - Ates-Russell: Visual-Auditory-Kinesthetic
92. Gates-McKillop Reading Diagnostic Tests. . .(entire.test). 55 minutes
93. Gates-McKillop Oral Reading
94. Gates-McKillop Words - Flashed Presentation
95. Gates-McKillop Words - Untimed Presentation
96. Gates-McKillop Phrases - Flasiled Presentation
97. Gates-McKillop Knowledge of Word Parts
98. Gates-McKillop Letter Sounas
99. Gates-McKillop Letter Names
100. Gates-McKillop Recognizing Visual Form of Sounds
101. Gates-McKillop Audiotry Blending
102. Gates-McKillop Supplementary Tests
103. Lincotn - Oseretsky Tests. 15 minutes
104. Gates-MacGinitie Reading Tests (entire test) 40 minutes
105. Gates-MacGinitie - Vocabulary
106. Gates-MacGinitie - Comprehension
107. Metropolitan Achievement Tests (entire test) 45 minutes
108. MAT Word Knowledge
110. MAT Reading
111. MAT Arithmetic Concepts and Skills
112. Metropolitan Elementaryb Arithmetic Tests (entire test). 30 minutes.
113. MEAT Arithmetic Computation
114. MEAT Problem Solving and Arithmetic Concepts
115. Gilmore Oral Reading Test. 10 minutes.
116. Durrell Analysis of Retiing Difficulty (entire test) 65 minutes
117. Durrell = Oral Reading
118. Durrell - Silent Reading
119. Durrell - Listening
120. Durrell - Flash
121. Durrell - Word Analysis
122. Durrell - Spelling
123. Durrell - Handwriting
124. Durrell - Naming Letters
125. Durrell - Visual Memory of Words
126. Durrell - Hearing Sounds in Words
127. Durrell - Spelling - Visual Memory
128. Durrell - Spelling - Phonics
129. Durrell - Spelling Test
130. Gray Oral Reading Test 15 minutes
Monroe Reading Aptitude Test. 25 minutes
131.
132. Monroe - Visual
133. Monroe - Auditory
134. Monroe - Motor
135. Monroe - Articulation
136. Monroe - Language
137. Medical Reports (entire medical battery) 50 minutes
138. Psychiatric Report (10 minutes)139. Neurological Report (10 minutes)14C. Ophthamological Report (10 minutes)
141. EEG Report (10 minutes)
142. Keystone Visual Screening. 10 minutes
143. Audiometric Screening. 10 minutes
144. Sequin Form Board. 5 minutes
145. Knox Cube Test. 5 minutes
146. Wepman Auditory Discrimination Test 5 minutes
147. Dynometer 2 minutes
148. Language and Speech Report. 15 minutes
149. Bender-Visual-Motor Gestalt Test. 7 minutes
150. Lacerality Preference Test. 7 minutes
151. Primary Mental Abilities Test (entire test). 28 minutes
152. PMA Verbal Meanings
153. PMA Spatial Relations
154. PMA Perceptual Speed
155. PMA Number Facility
156. Case History Report. 5 minutes
157. Behavior Rating Scale. 10 minutes
158. Informal Reading Inventory. 15 minutes
159. Oral Mechanism Examination. 10 minutes

SIMULATED DIAGNOSIS

Case: SALLY SIMCASE2

C.A.: 8 years 8 months

Grade: 3.1
Reason for Referrall-Reading difficulty in school
This child has been referred to your clinical team for a diagnosis of her problem. Your team will have an entire day for the evaluation. The child will be in the clinic from 9:00 a.m. to 12:00 noon. After an hour lunch break she will retrun to the clinic at 1:00 p.m. and remain until 3:00 p.m.

Your team will meet for a staffing and the making of diagnostic decisions four tires: (1) before the child arrives, to make plans for the morning session; (2) during the lunch hour to plan the afternoon session; (3) after the evaluation session to formulate the diagnosis; (4) as individuals at a final session to make decisions concerning appropriate teaching plans for the child who has been diagnosed.

DECISION 1. (pre-staffing)

Each team will estimate the time that each evaluative inscrument will take in planning the morning session. You may give an entire test battery or select to administer subtests. In addition you can obtain information on the case study report, me?ical reports, speech and language evaluations, teacher rating scales, etc. If you plan for more evaluations that the time allotted, the program will not accept the test and will instead select an alternative recommended test that can be given in the remaining time.

Fill in the form for DECISION 1 at the end of the prestaffing session.

1. Diagnostic team name (maximum of 8 spaces)
2. Members of Diagnostic Team. (max!mum of 56 spaces)

3. Assessment information desired in the morning session (plan for three hours). Put down the numbers for the diagnostic information desired.

*- =
OURRELL EAAL REAOING GRANE 1.8
OURREL

grane
grade
grane (-)
grane
grane (-)

[^0]GRAIDE 1.8
$-0 \quad 0 \quad 0 \quad 0$
GRanE (a)

Decision 2. (noon-staffing)

Your team now has three hours of diagnostic information. At this staffing you team will decide on what additional information you wish in the remaining two hours of the diagnostic session. Try to develop a tentative hypothesis and use the afternoon to test your ideas. The form below should be filled out in the same manner as DECISION 1.

Fill in the from for Decision 2 at the end of the noon-staffing session.
1.. Diagnostic team name (maximum of 8 spaces)

2. Members of the Diagnostic Team. (maximum of 56 spaces)

3. Assessment information desired ir the afternoon seasion. (fian for two hours.) Rut down the numbers of the information requested.

Decision 2. (noon-staffing)
Your team now has three hours of diagnostic information. At this staffing you team will decide on what additional information you wish in the remaining two hours of the diagnostic session. Try to develop a tentative hypothesis and use the afternoon to test your ideas. The form bilow should be filled out in the same manner as DECISION 1.

Fill in the from for Decision 2 at the end of the noon-staffing session.

1. Diagnostic team name (maximum of 8 spaces)

2. Members of the Diagnostic Team. (maximum o: 50 spaces)

3. Assessment information desired in the afternoon seasion. (Plan for two hours.) Put down the numbers of the informat'on requested.

VIS'JAL-MOTCR SKILLS, ALDITCZV iE-iIT A:O RECEPTION

MDEAS OE OEFICITS teay sazansis - -TEAM JEAMFOUR

TEAM ECォELE:4の
INIRASFVSOQY AUDITORY-EISCAIM SEOUENCINS-MEMORY .

TEA: DL? - --

AULITHAY EXOUESSISN: MEMORY, AVE DISCRIMINATION
OEVELCPVEVTIL LEVELS
TEAM SAEANSU
VIVELARD SECIAL ;ATURITY 1.5 YEARS RELSA ASE LEYEL, INTELLE ENCE
AVG RANGE. PEDFCRMING $11 / 2$ YDS GEICT TREDF LEVEL IN ALL AF OS -

IMTELLIGENCE 10 ? (VEABAL 96, PEPF 119). SGEIAL MAT. B4, LAAG
 TEAM CCDELEIJ

rean efers:
PACE
(and

DECISION 4.. SELECTING TEACHING STRATEGIES

Date \qquad
Team No. \qquad
Student No. \qquad
You have now spent an entire simulated day and several simulated staffing sessions evaluating and diagnosing the child under study. In this portion of the diagnosis you are asked to make decisions concerning teaching techniques.

Directions:

1. Read eact of the teaching techniques listed below. necide if it is a techniaue you would use (A); or you would not use (B) for the child you have been diagnosing.
2. If you choose (A) would use, indicate with a check () whether you would choose the method to build a deficit area (D); or to teach the subject by using an intact modality or asset (A); or you would select the techinique for other reasons (0).
3. If you choose (B) would not use, indicate whether you would choose this because (NA) the method is not applicable to this child; or (U) unknown-you do not know what the method is or you never heard of it.

Sumsnary: (D--deficit; technique chosen to build a deficit area
$A \begin{cases}A--a s s e t ; & t e c h n i q u e ~ c h o s e n ~ t o ~ t e a c h ~ b y ~ u s i n g ~ a n ~ i n t a c t ~ p r o c e s s ~\end{cases}$
8 $\left\{\begin{array}{l}N A-\text { not applicable for this child } \\ U-- \text { unknown }\end{array}\right.$

\qquad Team No.
Student No.

BEST Copx Aivashores

-

Hic

Bess corer amanususe．

4）MRITEATA
（＂）
$\begin{aligned} & r-3 ; \\ & 1 力 ? \\ & i \quad \\ & T=1 ;\end{aligned}$
$\begin{aligned} & 4 n \\ & 18 \\ & 18 \\ & 3\end{aligned}$
FITF 16]

$$
\begin{aligned}
& \text { If.1:5 }
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{lll}
\ddot{O} & & \ddot{g} \\
j & & \ddot{j}
\end{array} \tag{41}
\end{align*}
$$

$$
\begin{aligned}
& \text { 心号品 } \\
& \because \because \quad \because \\
& \because
\end{aligned}
$$

[^1]

siece sfudent response cahos

por each studenti

I Oava 154id
-0.0. weiont oefthetions eoose

$\begin{array}{ll}n \\ \cdots & n\end{array}$

コ

SITH FAMLLY FJR FIETEEN YEARSO UNTIL LAST YEAQ SRE JRESSEJ.

Shared-time Interactive Diagnosis (ON-LINE)

The following printouts were taken from the permanent records which is made of each student or group by the LINGO system. These records may be scanned by the teacher, or by a progxam, to produce statistics showing which tests are used by which students during the diagnostic procedure.

ERIC
antem test le reu select mexpo

ofs :me child mave a leannimg disabllity.

aunatiay

i

\square

SEF TME Mスさv?!!!

-
$1 \begin{aligned} & i \\ & i \\ & i\end{aligned}$ \square 1

for BASIC Programming

for
620-C07

INIRODUCTION TO COMPUIER APPLTCATIONS

 IN CONMUNICATIVE DISORDERSNorthwestern University

Janet W. Lerner
James A. Schuyler
Constance M. Hayes

Developad for Project:
Computer Applications to Learning Disabilittes Grant \# OEG-0-71-3735 (6039)

Bureau of education for the Handicapped Office of Education

INTRODUCTION

The purpose of this workbook is to present to the student the fundamental gramar and vocabulary of the BASIC computer programming language. It is geared to the student wha has not had extensive computer experience and has drawn its illustrations from the fields of comunicative disorders, learning diaabilities, speech pathology, hearing impaired, audiology and education.

Within the last decade the electronic digital computer has been transformed from a machine used primarily by business and science to a device which is considered a necessary tool in almost every field of endeavor. Some knowledge and familiarity with its technology is considered part of a broad education of any sort today. Universities are now taking account of the importance of the computer by offering more courses on programing, aystems analysis, simulation, and have even instituted departments of computer science. A great many students, however, for instance those in the fields of learning disabilities and related areas, need not gain an in-depth understanding of the computer, but need only a general understanding so that they might use it in their. work and more importantly, learn enough to effectively communicate with computer people. It is for this reason that we feel each student should learn the BASIC computer. programuing language, for it is a simple language which can be learned in a minimum amount of time, and by learaing to use it the student can get a far better understanding of the capabilities and limitations of the computer.

BASIC was developed at Dartmouth College under the direction of Professor J.G. Kemeny and was implemented on a G.E. system. BASIC is a language which can be used and is most commonly used in a timesharing envirrament where the student sits at a computer terminal (a type-writer like unit) and a number of students gain access to the computer simultaneously, or it can be used in a batch processing environment where the user places his instructions and data on punched cards which are submitted to the computer for processing.

CONTENTS

INTRODUCTION - page 1

TECHNIQUES USED IN DEVELOPING A PROGRAM - page 2
BASIC VOCABULARY AND GRAMMAR - page 4
fundamental elements of the basic language - page 4
INSTRUCTION SEQUENCE - page 4
GENERAL INSTRUCTION FORMAT - page 5
CONSTANTS - page 5
VARIABLES - page 5

BASIC INSTRUCTIONS - page 8

1) INPUT

2, PRINT
3) STOP
4) END
5) BASIC EXPRESSIONS AND REPLACEMENT STATEMENTS
6) $\mathbf{G O} \mathrm{TO}$
7) IF
8) DIM
9) FOR-NEXT

APPENDIX A
PROGRAMMING ASSIGNMENTS-
APPENDIX B
ANSWERS TO EXERCISES
techniques used in developing a program
To make a computer do your work, you muat provide it with control information (certain information which is used to identify you, the account which is to be charged for the computer time used, the programing language you plan to use), the program (this tells the computer what work it is to do), and data (information the computer needs to do its work).

To enter a program into the CDC 6400 at Northwestern University for on-line processing, for instance, one would code:

When developing a computer program it is important that the student:

1) Completely understand the requirements of the problem being studied and the procedure needed to obtain the desired results.
2) Be familiar with the capabilities of the programming language he has chosen. This is necessary so that the student can readily determine whether the procedure developed for solving the problem can be cranslated easily into a computer program. It might be determined that the procedure developed needs to be altered or a new programming language chosen to most efficiently achieve the desired results.
3) It is convenient, especially for a beginning programmer, to next translate his procedure for problem solution into a conceptual diagram (flow chart).
4) It is then a relatively simple matter to convert this diagram in an orderly fashion into a gramatically correct computer program.
5) . Next the student should execute his program to verify that the final results calculated by it actually meet the problem requirements. This step might require that the student use dumy dara (data for which he knows what results to expect) to check out his procedure and program before using his real data (data for which he is interested in finding an answer).

*** F.XAMPLE ${ }^{2}$ **

The Ann Arbor Psychological Evaluation Center wished to use some of the data gathered by an outside research firm for one of their studies. Their study required mental age information but unfortunately the research team only recorded the chronological ages and Intelligent quotients of the 3,000 children they tested. The Center decided that by writing a BaSIC computer progran they could easily use the punched cards prepared by the research team to obtain the information they needed.

Using the above model one can see how such a program would be developed.

1) Completely the understand the problem and procedure needed--
a) Mental age can be computed with chronological age and IQ information using the formula $M A=\frac{C A \times I Q}{100}$
b) There are 3,000 children so the procedire will have to be repeated more than once.
2) Be familiar with the capabilities of the programing language chosen=-
a) Multiplication and division can be easily performed in BASIC by using the $*$ and / operation.
b) Repetitive operations can be easily performed in BASIC by using the GO TO or FOR NEXT instructions.

3) Convert the diagram into a computer program--
```
10 REMARK--CONVERT IQ AND CHRONOLOGICAL AGE INFO INTO MA INFO
20 Cl=0
30 IF Cl=300U THEN 90
40 INPUT A, I
50 Cl=Cl+1
6%)}M=(A*L)/10
70 PRINT M
80 GO TO 30
90 STOP
100 END
5) Verify final results--
```

This step might require hand calculation to insure that the procedure is correct and that the program is working as expected.

EXERCISE - Techniques used in developing a program.

The Saginaw Public School System was interested in preparing a list of what they termed "gifted children", using as their criterion those children with IQ scores above 148.

Prepare flow chart which would depict the procedure you would use to get the necessary information. (Assume that the school system has iQ scores available and that it has an enrollment of 5000 students).

List the programing language capabilities needed to solve this problem.
basic vocabulary and gramMar
A programing language must have facilities which will allow information to be entered into the computer (INPUT CAPABILITIES), must have the the ability to instruct the computer to manipulate data once teas been entered (PROCESSING CAPABILITY), and must finally be able to inform the student of the answer to his problem (OUTPUT CAPABILITY). In the above program, line 40 is a BASIC input instruction; lines $20,30,50,60,80,90,100$ are processing instructions, while line 70 is a BASIC output instruction. It is with these capabilities in mind that we plan to discuss the vocabulary and grammar of BASIC.

Fundamental Elements of the BASIC Language

INSTRUCTION SEQUENCE. The computer will process each instruction in the order written in a user's program unless one of the instructions in the sequence directs non-sequential execution.

GENERAL INSTRUCTION FORMAT. Each BASIC instaruction must be numbered and the numbers must be unique and in ascending order. Note in the program discuseed above, the instructions were numbered $10,2 C, 30 \ldots 100$. They could have just as easily been numbered $1,2, \ldots 10$, or $2,4, \ldots 20$. It is generally a good idea to leave gaps when assigning numbers so that additional instructions can be inserted easily without the need to renumber all of the existing instructions. The line numbers can contain from 1 to 5 digits, i.e., from 1 to $99,999$. Blanks have no significance except within string constants and string variables. A BASIC statement may contain up to 72 characters.

CONSTANTS. A constiant is a quantity that has a fixed value throughout a program. BASIC recognizes two types of constants, the NUMERIC constant and the STRING constant,

NUMERIC CONSTANT - is a signed or unsigned number with or without a decimal point.
Examples: 1, -1, 105.2, .3, -.016
STRING CONSTANT - is a collection of numeric, alphabetic or special characters enclosed in quotation marks. They often sprve as messages.
Examples: "THIS IS A BASIC STRING CONSTANT"
VARIABLES. A variable is a quantity referred to by name because it may change in value during the processing of a program. A simple way of viewing computer memory is to think of it as a collection of containers. Each container can hold a number or alphabetic information. However, new data can be placed in the container at any time, so for convenience a name is assigned to the container and this name is used to refer to the number which is currently in it. For instance, the variable A refers to a container with the name A. This container may have the value 3 at one point during the program execution and 8 at still another time. It is for this reason that A is termed a variable.

BASIC VARIABLES. There are certain conventions for naming variables which represent numeric information in BASIC. They are named with a one or two character identifier. The first character must be aiphabetic, while the second must be numeric. There are 286 acceptable variable names. Can you name them?

> Examples: A; Z, A0, B3

STRING VARIABLES. There are certain conventions for naming variables which represent alphanumeric or string information in BASIC. They are named with a two character identifier. The first character must be alphabetic and the second must be a dollar sign. The alphanumeric information may not contain a quote and can only have a maximum length of $\mathbf{7 2}$ characters.

1) Check whether the following items are considered constants or variables by the BASIC programming language:

Check one

CONSTANT VARIABLE

a) 123.1
b.) " 123.1 "
c) A 0
d) \mathbf{G}
e) -3
f) "variable"
g) $x 9$
b) 0.079
i) M.
j) $M \$$

2) Identify the correctly coded variables and constants. For those which are unacceptable to the.BASIC programing language, specify the rule which makes them unacceptable. acceptable unacceptable why unacceptable
a) 0.34
b) " -7.31 "
c) A 32
d) $-A$
e) $M A$
f) " -A "
g) 754
h) $\$ \mathrm{~N}$
i) "ruLL SCALE IQ=100
j) 3G
k) $\mathrm{P} \$$

3) Number the statements in the following program so that additional instructions can be added if need be.

INRUT A, C
$\mathrm{C}=\mathrm{A}+\mathrm{C}$
PRINT C
STOP
END
4) Has the following program been numbered correctily? Why?

11 INRUT A, C
$\mathrm{C}=\mathrm{A}+\mathrm{C}$
21 PRINT C
31 STOP.
37 END
5) True or False:
a) Statement numbers must be consecutive
b) Statement numbers may consist of one to five digits
c) It is valid to assign the same statement number to several statements in a program
d) Every BASIC statement need not be assigned a number
e) Statement numbers must be assigned in increasing order of magnitude.

1) INPUT.

FORMAT: line number INPUT V_{1}, V_{2} where V_{i} are variables.
EXAMPLE: 10 INPUT A, GL, \$B
The INPUT statement allows the programmer to inform the computer of the data which is to be used during program execution. Signed or unsigned numeric constants as well as string information can be entered by means of the INPUT instruction. String information entered in response to an input request should be enclosed in quotes.
2) PRINT
FORMAT: line number PRINT VC1, VC2... where XCi are variables or constants (numeric or string).

EXAMPLE: 20 PRINT "The value of the variable $A=$ ", A 30 PRINI 200, G2.

The PRINT statement allows the user to see the current value of a variable or to output messages at. the computer terminal.

FORMAT OF PRINFED OUTPUT

The print line of a BASIC program is divided into five zones. Each zone has fifteen positions. The comma in the PRINT statement indicates to the computer that the printer is to move to the next print zone.. If the fifth:print zone has been filled before the comma is encountered, the information will be printed in the first position of the following print line.

For instance, PRINT $10,20,30,40,50$ causes the following to print.

and PRINT $10,20,30,40,50,60$ causes the following to print.

Ncte that each time a PRINT instruction is encountered, printing will begin in the first zone of a print line.

For eaxmple: $\begin{aligned} & \text { PRINT 10,20 } \\ & \\ & \text { PRINT } 30,40 \text { causes the following to print }\end{aligned}$

terminating print statement with a comma
A comma placed at the end of the PRINT statement causes the printer to continue printing in the next print position of the line previously written.
For example: PRINT 10,20, PRINT 30,40 causes the following to print.

Titles which contain more than 15 characters will occupy more than one print zone.
For example, PRINT "SCALED SCORE INFORMATION"

- SCALED SCORE INPORMATION

SHORTENING SIZES OF A PRINT ZONE
A semicolon can be used in a PRINT statement in place of a comma to shorten the size of a print zone (remember each print zone contains fifteen positions). The following will result when a semi-colon is included.

If the number printed contains 1-3 characters, the zone is shortened to 6 spaces; if the number contains $4-6$ characters, the zone is shortened to 9 spaces; if it contains $7-9$ characters, the rone is shortened to 12 spaces; for numbers of io or more characters, the zone is not shortened and contains 15 spaces.

Number Size	- Zone Size
$1-3$	6
$4-6$	9
$7-9$	12
70	15

For example: PRINT 20; 3578; 30 would cause the following to print.
 .

Semicolons and commas may be intermixed in a PRINT statement. in
TABULATION
A TAB command used in a PRINT statement causes the computer to print information beginning in the position specified. This somewhat resembles a tab stop on a typewriter. Tab arguments from 1 to 72 may be used. If the argument is less than the current print position TAB has no effect. The semicolon has to be used as a separator.

EXAMPLE: 20 PRINT TAB (10);2;TAB(20): "IS THE ANSWER"
1234567891011121314151617181920
0
2 IS THE ANSWER
0
3) STOP

FORMAT: line number STOP
This instruction is used to stop program execution and may appear at any point in the program.

EXAMPLE: 325 STOP
4)

The END statement indicates the termination of a program. Every program must have the END statement as the last and highest line number.
EXAMPLE: 25 END
You are now ready to write a BASIC program which will enter chronological age and IQ information into the computer and then prite it so that it may be retained as a permanent record. This, of course, is a trivial program and not one that would ordinarily be coded. However, we only have.a limited number of instructions at our disposal at this time and thus this is all we are capable of doing so far.

```
10 INPUT C. \(I\)
20 PRINT "Chronological age \(=\) ", \(C\), " \(1 Q="\) ",
30 END
```

When this program is executed, a question mark will be printed on the terminal when the INPUT instruction is encountered. The question mark is requesting the user to enter the value of the chronologeial age and the IQ. Assuming the child is 109 months and has an IQ of 118 , the uiser would type 109,118 after the question mark. (Note that the user must enter chronological age before IQ to ensure correct processing; Why?) The computer would then print on the terminal:

$$
\text { Chronological age }=109 \quad 1 Q=118
$$

as a permanent record for the user.

At this point we are now ready to learn the processing instructions provided the user by the BASIC programming language.
5) BASIC EXPRESSIONS AND REPLACEMENT STATEMENTS.

There are five basic arithmetic operations which can be performed by the BASIC prcgramming language: addition, subtraction, multiplication, division and exponentiation. The symbols used are:

```
addition +
subtraction -
multiplication*
division /
exponentiation f
```

Parenthesis are often used to make explicit the order. in which an expression should be evaluated, although there are specific rules which are used by the computer that make the inclusion of parenthesis unnecessary. For instance, theexpression $A / B+C$ 'might seem ambiguous; is A divided by B and then added to C, or is B added to C and then A divided by this sum? The order of operations rules clarify this apparent problem. The rules state:

1) All exponentiation is done first.
2) Ali multiplication and/or division is done second.
3) All addition and/or subtraction is done last.
4) Ordering within each level is from left to right.
5) Parenthesis may be used to modify or simply clarify the ordering presented sbove.

What. then is the meaning of $A / B+C$?
How would you change this expression so that the entire sum B+C is divided into A?

It is meaningless to simply compute a value without piacing the value in one of the containers of the computer, printing it or using it to direct instruction execution. $A=E / F \hbar 3$ is a replacement instruction or assignment instruction. It is termed this because the number found in the container named E is divided by the number found in the container named F. This quotient is then multiplied by three and the result is placed in the container named A. What is the meaning of $C 1=C 2 * C 3 \uparrow 2 / 6$ and in what order are the operations performed?

```
10 A=1
20 A=A+2
30 A=A+2
```

This sequence shows more clearly why this type of instruction is called a replacement inatruction.

1) $10 \mathrm{~A}=1$ The container named A will have the value 1.
2) $20 A=A+2 \quad A+2$ means take the current value found in the container named A and add two to this value. The result would be $1+2$. The instruction further requires that the result be placed back into the container named A. So efter this instruction is executed, container A has the value 3 in it.
3) $30 \quad A=A+2$ What will the value of A be after this instruction is executed?

EXERCISES

1) True of False

a) Each print line has five print zones.
b) Every print zone of a print line must contain information before the line can actually be printed.
c) A semicolon is used to change the size of the print zone.
d) A PRINT statement may never end with a copms.
e) The comes in the PRINT statement indicates that the printer is to move to the next prirt zone.
f) Printing ends whenever the fifth zone has been filled.
g) PRINT $10,20,30$ and the sequence PRINT 10,20 PRINT 30 will both cause the same information to print in the same format.
h) Titles can only contain 15 characters because they must not overrun print zone boundaries.
i) Semicolons and comalas can be intermixed in any PRINT statement. j) A semicolon reduces the size of the print zone to 6 spaces.
2) On the imaginary output forms show what would result from each of the following:
a) PRINT 99,732,55

0
0
b) PRINT "AVERAGE SCALED SCORE", 32

0
0
c) PRINT 1053; 32; 521, 10

0
0
d) PRINT 10,5534,

PRINT 925,36
0
0
e) PRINT 25,7532

PRINT 671,11
0
f) PRINT TAB(2);"THE ANSWER=";TAB(30);7

0
0
g) PRINT "IHE ANSWER=";TAB(20); P where P contains the value 10

0
0
3) What will A and \$G contain after the statement 10 INPUT A,\$G is executed.

Given the students enters 25, "SALLY SMITH" at the terminal
4) List the order in which the operations in the following expressions would be performed.
a) $B=A+C-3.0$
b) $C=I * 5+J / K$ \qquad
c) $X=X *(Y+Z)$ \qquad
d) $F=(G+K / 5.0-7) * .321$
e) $F=G+K / 5.0-7 \% .321$
5) What is the meaning of each of the following:
a) $B=C+D-5$
b) $\mathrm{D}=\mathrm{D}+3$
6) What will be the value of A after the following instructions have been executed?

$$
\begin{aligned}
& B=3 \\
& A=1 \\
& C=5
\end{aligned}
$$

a) $A=A+B+C$
b) $A=A+3$
c) $A=B * C / 5$
d) $A=A+A$
e) $A=(B+C * 2) / 4 T 2$
7) Write a program which will compute and print a child's IQ when his chronological age and mental age are available. (Hint: MA=(Chronological Age X IQ)/100
8) Kenny was referred to the Northwestern Learning DisabiTities Center because of an apparent language problem. The Picture Story Language Test was used as one of the diagnostic instruments. Write a program which will produce a neat record of his test results. Compute the words per sentence (TW/TS), Total Unit (NW+TO), Total Correct (TU-TE) and Syntax Quotient (TC/TU $\times 100$). Your printed output should resemble the following with the appropriate WPS, TU, TC, SQ information included. Productivity

Total Words (TW) 63
Total Sentences (TS) 5
Words per Sentence (WPS) \qquad
Syntax Scores

Number of Words (NW)	63
Total Omissions (TO)	3
Total Units (TU)	
Total Errors (TE)	3
Total Correct (TC)	
Syntax Quotient (SQ)	-

9) George was referred to the Northwestern Learning Disabilities Center because of his apparent reading difiiculty. He was given the WISC as part of his diagnostic test battery. Write a program which will produce a neat record of his WISC results and which will compute an average scaled score of all of his subtests, an average scaled score for his verbal subtests; and an average scaled score for his performance subtests.

VERBAL

Information	12
Comprehension	12
Arithmetic	7
Similarities	10
Vocabulary	6

PERFORMANCE

Picture Completion	10
Picture Arrangement	13
Block Design	15
Object Assembly	17
Coding	9

Picture Arrangement 13
Block Design 15
Object Assembly 17
Coding 9

Instructions of a program are normally processed in order; however, there are a few BASIC statements which can be used to alter this normal sequential processing. The GO TO is used to execute an unconditional transfer (transfer automatically to another section of the program) and the IF is used to execute a conditional transfer (a transfer somewhere only if a specified condition is met). These two transfers are analogous to the sentiments presented in the statements:

1) I am going on vacation this summer. (Unconditional).
2) I will go on vacation this summer only if I have saved $\$ 1,000$ by that time. (conditional)
3) $\quad \mathbf{C O} \mathrm{TO}$.

FORMAT: line number $C O$ TO line number
EXAMPLE: 10 GO TO 30
This instruction causes an unconditional transfer. This statement causes the instruction at the referenced line number to be executed next. Normal sequential processing will continue from that point.
$10 \quad B=0$
20 INPUT A
30 B=A+B
40 PRINT B
50 GO TO 20

Statement 50 causes statements $20-40$ to be repeated. This is a classic example of a "loop". This looping operation is the main reason it pays people to write computer programs. A series of instructions need only be coded once but can be executed several times.

It is important to follow the value of B each time the sequence 20-40 is executed. Let's assume that the date entered is $A=2, A=8, \quad A=9$

7) IF

FORMAT: line number 1 THEN n where r is a relational expression and n is a line number

EXAMPLE: IF I=8 THEN 165
IF J 2 THEN 20
-
The IF instruction causes a conditional transfer to the line number specified. The relational expression is the portion of the instruction that specifies the condition which must be satisfied if control is to be transferred. If the condition is judged true, the program control transfers to the statement number specified, but if it is judged false, the next sequential statement is executed.

There are six conditions which can be tested in a relational expression. Relational expressions can be used to test whether the value of two expressions are equal, not equal; can be used to test whether the value of one expression is greater than a second, greater than or equal to a second, less than a second, or finally, less than or equal to a second.

The codes used for these relationships are:

\rangle or \times	equal to not equal to
	greater than
$\rangle=$ or $=><$	greater than or equal to less than
$<=$ or $=$ <	less than or equal to

The IF instruction is often used to determine when all the data has been processed. If the programer knows the exact count of his data cards, he might code:

10 IF Cl=20 THEN 30 -
$30 \quad$ STOP
40 END
where Cl is a count of the number of records processed. There are 20 records in this example.

A more flexible method, lwwever, for terminating program execution is to enter as the last record one which contains unreasonable data and then to test for this condition. For instance:

10 INPUT I
20 IF I=999 THEN 30
30 STOP
40 END
where I contains IQ scores and an IQ score of 999 is unreasonable and therefore it is used to signal to the program that it has processed all the data records.

With this explanation you should be able to thoroughly understand the following program.

10 REMARK CONVERT IQ AND CHRONOLOGICAL INFO INTO MENTAL AGE INFO
$20 \mathrm{Cl}=0$
30 IF Cl=3000 THEN 90
40 INPUT A, I
$50 \quad \mathrm{Cl}=\mathrm{Cl}+1$
$60 \quad M=(A * I) / 100$
70 PRINT M
80 CO TO 30
90 STOP
100 END
$20 \quad$ Cl=0. Cl is initialized to zero in step 20. Cl is being used as a counter so that the program can terminate execution after it has completed the mental ages of thirty children. All counters are first initialized to 0 .

30 IF Cle 3000 THEN 90. Directs a transfer to statement 90 only after the variable Ci has the value 30 . If Cl equals anything other than 30 statement 40 would be the next instruction to be executed. This is the situation the first time statement 30 is executed because cl will have the value 0 at that time. How many times will statement 40 be executed in this program?

40 INPUT A, I. The INPUT instruction requests the chronological age and $1 Q$ information from the user.
$50 \mathrm{Cl}=\mathrm{Cl}+1$. Counts the number of children who have been processed. The first time this instruction is processed the value of Cl will be changed to one, i.e., Cl=0+1.
$60 \mathrm{M}=(\mathrm{A} * \mathrm{~L}) / 100$. Computes the mental age score from the child's chronological age and IQ information. The chronological age is multiplied by the IQ score. This product is then divided bly 100.

70 PRINT M. Prints for each of the thirty children the mental age value which was computed by the program.

80 CO TO 30 . Transfers control to the $1 F$ instruction to check whether all thirty children have been processed by the program.

90 Srop. Terminates program execution and is executed only after Cl=30.
100 END. - This must be the last statement in every BASIC program.
It is important that the student realize that there are usually many ways to solve and program his solution to the problem.' This program could have been coded:

10 REMARK CONVERT IQ AND ChRONOLOGICAL AGE INFO INTO MENTAL AGE INFO
$20 \mathrm{Cl}=0$
30 INPUT A, I
$40 \quad \mathrm{Cl}=\mathrm{Cl}+1$
$50 \mathrm{M}=(\mathrm{A}+\mathrm{I}) / 100$
60 PRINT M
70 IF Cl< 3000 THEN 30
80 - 820 P
90 END
Do you see why? How does this program differ from the original one?

EXERCISES -- BASIC INSTRUCTIONS

1) Write the BASIC instruction which will cause an unconditional transfer to statement number 25 .
2) Write the BASIC instruction which will cause a conditional transfer to to statement number 25 , based on the condition that the value of the variable B is less than the value of the variable A.
3) Write the BASIC instruction which will multiply the sum of E and F by M, and place the result back in M.
4) List the six relations which can be tested in an IF instruction.
\qquad
5) Write two BASIC instructions which will cause an conditional transfer to statement number 36 , based on the condition that the value $Q f$ the variable Z is greater than the value of the variable X.
6) Describe briefly in wcrds what is being done in each of the following programs:
a) $10 \quad \mathrm{X}=0$

20 INPUT A, B, C, D
$30 \quad X=X+1$
$40 \quad A=(A+B+C+D) / 4$
50. PRINT A

60 IF X 50 THEN 20
70 END
b) 10 INPUT G, C,M,R
$20 G=G+5.2$
$30 \mathrm{~L}=(\mathrm{C}+\mathrm{C}+\mathrm{M}) / 3$
$40 \quad Q=(R / L) * 100$
50 PRINT Q
60° END
c) $10 \quad \mathrm{C}=0$

20 INPUT S
$30 \quad \mathrm{C}=\mathrm{S}+\mathrm{C}$
40 PRINT C
50 GO TO 20 .
7), a) How many times will instructions, 20 through 50 be executed in program 6a?
b) How many times will instructions 10 through 50 .be executed in program 6b?
c) How many times will instructions 20 through 40 be executed in program 6c?
8) a) Given that the initial values entered into program $6 a$ are $A=6 \quad B=10 \quad C=12 \quad D=8$, what will the value of A be after statement 40 is executed for the first time?
What numerical value will be princed by 50 PRINT A the first time it is executed?
b) Given that the initial values entered into program 6b are $G=5.5 C=10.3 \quad M=10 \quad R=2.5 \quad$ what will the value. G be after statement 20 is executed?
value of L be after statemant 30 is executed? What numerical value will be printed by 50 PRINT Q ?
c) Given ihs: $S=2$ the first, time statement 20 in progran $6 c$ is executed, $S=10$ the second time, and $S=9$ the third, what will be printed the first time statement 40 PRINT C is exccuted?
\qquad ; the second time? \qquad ; the
third time it is executed? \qquad .
9) Identify the correctly coded instructions. For those which are unacceptable to the BASIC programing language, specify the rule which makes them unacceptable.

ACCEPT. UNACCEPT. WHY UNACCEPT.
a) $10 \quad A=2=A 22+1$
b) 20 INPUT "This program computers IQ scores", I
c) 2535 . INPUT B,C2,C3,C5
d) 342 PRINT "IQ SCORE", Q
e) 210 IF A> $=\angle$ GO TO 20
f) 210 GO TO "NEXT INSTRUCTION"
g) 310 STOP PROGRAM
h) 310 PRINT 20,30,40
i) 270 INPUT 20,30,40
j) IF B2=SB3 THEN 991
10) a) The illinois state regulations considers a child to have failed the Audiometric screening Test if he does not respond at two or more' frequencies in the same ear at the screening level. The state regulation require., that screening be done at the frequencier of $500,1000,2000$ 4000 at a hearing level of 25 dB . Because the frequency range, 500-2000 is critical for the acquisition and use of language and speech, it appears that the failure criteria should be more stringent. For example, e child is considered to have failed if he does not respond at one or - .o:e frequencies in the $500-2000 \mathrm{~Hz}$ range.

Write a program which wili list those children who have not passed the screening test, based on this more stringent criteria. ("HINT": You must enter ao data a student identification nurber and a pass-no pass indication for each frequency at the 25 dB level. Try using $1,2,3$ as a student identification number and use acode of 0 for no pass and a code f 1 for a pass indication.)
DATA:

Right Ear	500 Hz	1000H2	2000H2	4000H2
Child 1	Pass	Pass	Pass	Pass
Child 2	No Pass	No Pass	Pass	Pass
Child 3	No Pass	No Pass	No Pass	No Pass
Child 4	No Pass	Pass	Pass	Pass
chili 5	Pass	Pass	No Pass	No Pass
Child 6	Pass	Pass	Pass	No Pass

If you choose to use an input statement of the form INPUT, I, A, B, C, D then you would enter $1,1,1,1,1$ based on the above HINT for child one and $2,0,0,1,1$ for child two and so on.
b) Using the above data write a program which will list chose children who have not passed the screening test using the Illinois State regulations as a screening criteria.

further information about the basic programaing language

(for those who want to be slightly more accomplished BASIC programmers)

SUBSCRIPTED VARIABLES

Basic allows the programmer to define one variable name to enter a large list of information. This is done with a BASIC subscripted variable. A subscripted variable cakes the form of variable name followed by parenthesis which encloses an integer constant. (NOTE the variable name must follow the same naming conventions as presented above for unsubscripted variables, ie, one alphabettich or two characters, the first of which must be alphabetic, and the second a numeric character).

EXAMPLES: $\quad \mathbf{K}(2)$
K3(4)
I(8)
The above examples represent only sinjiy subscripted arrays - However, BASIC does also allow doubly $K(2,3)$ and triply subscripted $\mathrm{K}(1,3,7)$ arrays. To better understand subscripted jariables, let's study how they can be used to reference a list of numbers. Suppose $44,48,46,48,45,32,36,36,30,38$ represented the scaled scores that a child received on the ITPA. One might define array S and have:

$S(1)$	44
$S(2)$	48
$S(3)$	46
$S(4)$	48
$S(5)$	45
$S(6)$	32
$S(7)$	36
$S(8)$	36
$S(9)$	30
$S(10)$	38

where the variable name $S(1)$ would be usad to reference the first scaled scores (44), $S(3)$ to reference the third scaled score (46). How would you reference the lest scaled score? \qquad

DIM
As long as you only plan to reference a list of ten items, you need not tell the computer explicitly that a variable is subscripted. If, however, you plan to use the subscripted variable to reference more than 10 items you must include a DIM statement.

DIM $V_{1}\left(L_{1}\right), V_{2}\left(L_{2}\right) \ldots V_{1}\left(L_{1}\right)$ - where $V_{1}, V_{2} \ldots V_{1}$ is the iist of array names which will contain more than 10 items.

- $L_{1}, L_{2}, \ldots L_{i}$ is the maximum number of items each array might contain.

EXAMPLE: DIM•A(25), A3(50)
The DIM is the way of explicitly telling the computer that a variable is subscripted. It may appear anywhere in a program.

FOR and NEXT Statements
FORMAT: FOR V = S1 TO S2 STEP S3 - where $V=$ any variable $S_{1}=$ initial value agsigned V $S_{2}{ }^{-m a x i m u m ~ v a l u e ~} V$ can reach S3=value by which V is increased each time the NEXT statement is executed. S_{1}, S_{2}, S_{3} can be any expression.
NEXT V - where V is the same variable specified in the FOR statement.

| EXAMPLE | FOR X=1 TO 10 STEP 2 | FOR | $S=1$ TO N |
| :--- | :--- | :--- | :--- | :--- |
| | \vdots | \vdots | |
| | | | |

The FOR-NEXT statements greatly facilites the definition and control of repetitive operations. In general most information processing procedures have repetitive processes inherent in them. It is for this reason that the FOR-NEXT is such an important BASIC instruction. The FOR-NEXT may be. best understood by looking at the following examples:

EXAMPLE 1.

10	$C=0$
20	$S=0$
30	IF C=10 THEN 80
40	INPUT J
50	$C=C+1$
60	$S=S+J$
70	GO TO 30
80	next instruction
to:	
10	$C=0$
20	$S=0$
30	FOR K=1 TO 10 STEP 1
40	INPUT J
50	$C=C+1$
60	$S=S+J$
70	NEXT K
80	next instruction

The FOR-NEXT causes the repeated execution of the instructions following the FOR and preceding the NEXT. In general terms, the FOR statement causes V to be assigned the value S_{1}, the first time it is executed. Each time the NEXT instsuction is encountered the value of V is incremented by S_{3} and a test is made to see if the value of $V=S_{2}$. If this limit is reached, the next sequential instruction is executed. If the limit has not been reached the instruction following the FOR is reexecuted. Therefore, in the above example K is set to 1 and each time NEXT K is executed the value of K is increased by one and a test is made to see if $\mathrm{K=} 10$ (the limit value). The FOR-NEXT can be shortened when incre: menting is to be by ones. You can simply omit the increment portion... For example: YOR $K=1$ TO 10 could have been used in the above axar sle.

```
To further study the FOR instruction, let's recode the example presented on page 19.
10 REMARK--CONVERT IQ AND CHRONOLOGICAL AGE INFO INTO MA INFO 20 Cl-0
30 IF Cl=3000 THEN 90
40 INPUT A, I
\(50 \quad \mathrm{Cl}=\mathrm{Cl}+1\)
\(60 \quad M=(A * I) / 100\)
70 PRINT M
80 GO TO 30
90 STOP
100 END
would become:
10 RENARK-CONVERT IQ AND CHRONOLOGICAL AGE INFO INTO MA INFO
20 FOR Cl=1 TO 3000
30 INPUT A, I
\(40 \quad M=(A * I) / 100\)
50 PRINT M
60 NEXT C1
70 STOP
80 END
```

Do you see why? \qquad

1) Identify the correctly coded subscripted variables. For those which are unacceptable in BASIC, specify the rules which makes them unacceptable:

2) Code the DIM statement for the subscripted variable T so that the following information can be stored in T :

$$
.5,9.6,10.5,6.5,13.3,10.4, .01,9.25,15.7,17.3,18,21^{\prime}
$$

3) In the above array T what would be the value of

T(7) \qquad
T(3)
T(12)
T(15) \qquad
4) Identify the correctly coded FOR instructions. For those which are unacceptable in BASIC, specify the rule which makes them unacceptable.

Acceptable/Unacceptable Why Unacceptable
a) FOR $S=1$ TO 20 STEP 2 \qquad : \qquad NEXT S
b) $F O R S=1 T 0 X$ NEXT 2
c) FOR $\mathrm{S}=1 \mathrm{TOX} \operatorname{STEP} 1$ NEXT X
d) \quad FOR $T=2$ TO 10 STEP 3
NEXT T
5) How many times will the instructions within the range of the FOR-NEXT be executed?
a) $\mathrm{N}=3$
answer \qquad
$\mathbf{S = 0}$
FOR X 1 TO 19
$S=S+X$
NEXT X
b) $N=3$
answer
$\mathrm{S}=0$ FOR X=1 TO N
-S S+X
NEXT X
c) $\mathrm{N}=3$

S=0
FOR $X=1$ to 19 STEP 2 answer
$\mathrm{S}=\mathrm{S}+\mathrm{X}$
NEXT X
6) Code the FOR NEXT sequence which would be equivalent to:

10	I=0	
20	INPUE J	
30	$\mathrm{I}=\mathrm{I}+1$	
40	PRINT J	
50	IF I > ${ }_{5}$	THEN 20
60	STOP	
70	END	

PROGRAMMING WITH SUBSCRIPTED VARIABLES, DIM AND FOR-NEXT INSTRUCTIONS

EXAMPLE: Write a program which will process the READING ACHIEVEMENT SCORES for 50 children. Compute the mean Reading Achievement Score and print this mean as well as the test record for each child.

Hint: You cannot compute a mean of all the children until all the records are read.

10	S=0
20	FOR I=1 TO 50
30	INPUT MS,R
40	PRINT MS,R
50	$S=S+R$
60	NEXT I
70	$A=R / 50$
80	.PRINT A
90	STOP
100	END

How would this program be altered if one was working with an unknown population size?
$5 \quad \mathrm{Cl}=0$
$10 \quad \mathrm{~S}=0$
20 INPUT MS,R
30 IF R=999 THEN
80
$40 \quad \mathrm{Cl}=\mathrm{Cl}+1$
50 PRINT NS,R
60 S=S+R
70 GO TO 20
$80 \quad \mathrm{~A}=\mathrm{R} / \mathrm{Cl}$
90 PRINT A
100 STOP
110 END
Looking at a more difficult version of this problem:
Example: Write a program which will process the READING ACHIEVEMENT SCORES for 50 children. Compute the mean reading achievement score and print only the test records for those children who fall below this mean.
HINT: 1) One cannot coupute a mean of all the children until all the records have been processed.
2) One cannot determine those children whose scores fall below the mean until after the mean is computed; therefore it is necessary to save this information somehow. It would be difficult to save this information in 50 different variables; therefore one should choose to use oubscripted variablea.


```
10 DIM IS(50), R(50)
20 S=0
30
40
60 REMARK ACCUMULATE THE SUM OF READING SCORES
70 S=S+R(J)
80 NEXI J
85 REMARK--COMPUTE THE AVERAGE
90 A=S/50
95 CHECK FOR CHILDREN BELOW THE AVERAGE
100 FOR J=1 TO 50
110 IF R(J)>'EA THEN }13
120 PRINT I$(J),R(J)
130 NEXT J
140 STOP
150 END
```

What changes 'would you make to this program if the population size was unknown?

BASIC PROGRAMMING PROBLEM 1

Jim was referred to the Northwestern Learning Disabilities Center for diagnosis. It was reported that he had difficulty reading. The clinic staff decided to administer the entire Illinois Test of Psycholinguistic Abilities (ITPA) to check for possible auditory or visual processing problems.

Write a program which produces a neat record, with the appropriate subtest names. Compute and.pfint his, overall ITPA scaled score average, his auditory-vocal average and a visual-motor average.

The Almac School system requested that all their teachers complete a pupil behavior rating scale for each member of their class. The school system hoped to use this as part of a total diagnostic battery to aid in the identification of children suspected of having a learning disability. Write a program which will produce a neat record of the pupil rating scale completed by Mrs. Donothing for Tommy Monster, and which computed an average total rating and an average rating for each of the five areas of behavior, i.e., Auditory Comprehension and Listening, Spoken Language, Orientation, Behavior, and Motor.

The rating scale is attached.

DATA for Tommy Monster

Auditory Comprehension

1. Rating of 3
2. Racing of 4

Spoken Language

1. Rating of 2
2. Rating of 2

Orientation

1. Rating of 4
2. Rating of 2

Behavinr

1. Rating of 5
2. Rating of 4

Motor

1. Rating of 2
2. Rating of 1

LENRNING DISMBILITTES CENIER

 FRPI REMVTOR RATTHG SCALS

> You rate the chridren the bottex the Your juderant rogarding dentifying leminas

IV. HiSH:SVOK
Con:oration
 of turn
3
wils his turn;
cveruge for cgo
cind giado

BASIC PROGRANMING PROBLEM 3

Write one program which analyzes the records of five children and which

1) will report a neat record (with appropriaite subtest names) of each child's Illinois Test of Psycholinguistic Abilities (ITPA)
2) will compute and print an average ITPA scaled score
3) will determine and print those subtest scores which fall 8 points or more below the child's average scled score
for each of the five children.
DATA:

Child 1 - A.R. 44
A.A. 48
V.E. 46
G.C. 48
A.M. 45
V.R. 32
V.A. 36
M.E. 36
V.M. 30
V.C. 28

Child 3-A..R 33
A.A. 42
V.E. 45
G.C. 48
A.M. 43
V.R. 36
V.A. 37
M.E. 43
V.M. 46
V.C. 35

Child 5 - A.R. 27
A.A. 17
V.E. 25
G.C. 25
A.M. 33
V.R. 23
V.A. 28
M.E. 29
V.M. 24
V.C. 25

Child $2 *$ A.R. 45
A.A. 29
V.E. 34
G.C. 48
A.M. 43
V.R. 41
V.A. 51
M.E. 40
V.M. 46
V.C. 39

Child 4 - A.R. 20
A.A. 16
V.E. 19
G.C. 18
A. M. 27
V.R. 17
V.A. 14°
M.E. 27
V.M. 6
V.C: 13

BASIC PROGRAMMING PROBLEM 4

The Administrators at the Northwestern Speech Clinic would like to evaluate student clinic performance by computer. They are interested in computing each student's average grade as recorded by their supervisors on their Clinic Evaluation Forms. The administrators are also interested in having a list of those students who are performing below average work in one or more of the categories of evaluation.

Write a program which will:
a) Compute and print a student's average score based on the scoring: Superior=5, Strong=4, Averagaz3, Fair=2, Inadequate=1
b) Compute and print an average score for each category of evaluation using the above scoring technique
c) Note on the printed output ail students ' who have performed below a 3.5 average in one or more categories of therapist evaluation.
d) Compute and print a count of the students who will receive $A^{\prime} s$, B ' s, C's; F's, based on the grading criterion.

$$
\begin{array}{r}
4-5=A \\
3-3.9=B \\
2-2.9=C \\
1-1.9=F
\end{array}
$$

The following is a sample of the evaluation form used.

THERAPY PLANNING

1. Ability to evaluaite patient needs and formulate appropriate quarter goals. .
2. Determining rationale for therapy procedures
3. Utilization of baseline measures in .planning.

THERAPY MANAGEMENT

1. Preparation for therapy sessions (lesson plans)
2. Selection and use of appropriate ${ }^{\text {* }}$ materials and activities (consistent with goals, age, interest)
3. Selection and use of appropriate reinforcement procedures (reinforcer schedule, obvious, meaningful)

DIAGNOSTICS

1. Ability to determine $p \in$-tinence of pretest information
?. Ability to interpret test results C. Overall rapport in interviewing

Superior	Strong	Average	Fair	Inadequate
	\cdots			.
?				
				$=$.
,			.	
. ${ }^{\text {b }}$				-
	.		.	\cdot
	\cdot			
.				\because

BASIC PROGRAMAING PROBLEM 5

Write a program which analyzes the files of five children and which will

1) prepare a neat reco:d (including titles) of each chiid's file
2) compute and print the average verbal, performance, and full scale iQ scores on the Wechsler Intelligence Scale for Children (WISC).
HINT: (Verbal IQ score child $1+$ verbal IQ score child $2+$ verbal iQ score score child $3+$ verbial IQ score child $4+$ verbal IQ score child 5)/5 = Verbal IQ AVERAGE
3) Label in some manner che records of the children whe had a discrepancy of more than 6 points b :tween their verbal and performance IQ scores on the WISC.

data			WISC Scores	
Name	Ase	Verbal	Performance	Full
C. Hanes	7.3	94	100	98
D. Field	6.5	100	100	100
H. North	9.3	110	120	115
E. Start	10.5	94	,110	103
F. End	12.3	100	94	97

basic procramming problem 6

Mrs. Mary Jones, a mathematics teacher at Jordan Jur. High, has hired you to assist her in processing her class information by computer. Her most recent request is-for you to analyze the results of the class mid.term exam. You are te write a program which will:

1) compute and print the class mean on this midterm
2) Prepare two lists, one which will contain the test information of those equal to or above the mean and second, which will contain the test information of those below the mean.

DATA TEST SCORE

HANES	83	
PROOF	94	
MEAN	100	
BELT	63	
SALTER	76	
SEAL	94	
GRANT	100	
CIDER	61	
HANKS	73	
SIDES	89	
MIDDLE	98	
HODGE	43	
CARLS	79	
HALL	96	
CHAR	98	
END	65	

ANSWERS - to problems found on page

1) a) constant
b) constant
c) variable
d) variable
e) constant
f) constant
g) variable
h) constant
i) variable
j) variable
2) a) acceptable
b) acceptable
c) unacceptable. A variable name may only contain two characters.
d) unacceptable. A variable name way not contain any special characters.
e) unacceptable. A variable name
second character i.e., 0-9
f) acceptable
g) acceptable
h) unacceptable. A string variabie is named with a two character identifier. The first character must be alphabetic and the second uust be a dollar sign
i) unacceptable. A string constant must be enclosed in quotes.
j) unacceptable. A variable name must begin with an alphabetic character.
k) acceptable
3) acceptable
4) 10 INPUT A,C
$20 \quad$ CaAtC
30 PRINT C
40 . STOP
50 END
Any numberang would be acceptable as long as the numbers are assigned in increasing order of magnitude and no two statements are given the same numbers.
5) No, the statement $C=A+C$ must be numbered. All BASIC statements must be numbered.
6) a) F
b) T
c) F
d) F
e) T
7)

a) T
b) F
c) T
d) F
e) T
f) E
g) P
h) F

1) T
j) E
2)

f) O-THE ANSWER----n----------------7
g) OTHE ANSWER=--n-----10
3) A will contain 25
\$G will contain SALLY SMITH
4) a),,$+-=$
b) $*, 1,+,=$
c) $+, 8,=$
d) $1,+,-, *,=$
e) $1, *,+,-,=$
5) a) Means take the current value found in location C and add to this the current value found in location D. Subtract 5 from the sum and place the results into location B.
b) Means take the current value, found in location D and add 3 to it. Place this sum into location D.
b) a) 9
b) 12
c) 3
d) 6
e) $13 / 16=.8125$
7) 10 REMARK - PRINT IQ, GIVEN CA and MA
20 REMARK - IQ = MA/CA* 100
30 INPUT M, C
$40 \quad I=M / C * 100$
50 PRINT "INTELLLIGENCE QUOTIENT=", I
60 STOP
70 END
8) 10 REMARK - PRINT PSLT RESULTS
20 INPUT W,S, $\mathrm{N}_{3} \mathrm{O}, \mathrm{E}$
25 REMARK COMPUTE WORDS PER SENTENCE
30 W2wW/S .
35 REMARK COMPUTE TOTAL UNITS

40
45

55

80 RRINI PRODUCIIVIIY
80 PRINT "TOTAL WORDS (TW) $=$ ", W
90 PRINT "TOTAL SENTENCES (TS)=", S
100 PRINT "WORDS PER ? • SENCE (WRS)=",W2
110
120 PRINL "SYNTAX SCORES"
130 PRINT "NUNBER OF WORDS (NW) $=$ ", N
140 PRINT "TOTAL OMISSIONS (TO) =", 0
150 PRINI "TOTAL UNITS (TU)=", U
160 IRINT "TOTAL ERRORS (TE) $=$ " E E
170 PRINT "TOTAL CORRECT (TC)=", C
180 PRINT "SYNTAX QUOTIENT (SQ)=",Q 190 STOP
200 END
9) 10 remark compute avg total scaled score-wisc2030405060708090100 PRTNT "COMMREHENSTON"110 PRINT "ARITHMETIC",V3V2120 FRINT "SIMILARITIES",V4
130 PRINI "VOCABULARY", v5

 PRINI "vocabulary", v5
 140

 PRINT " ", "VERBAL AVERAGE=",V6150
 160

 PRINT "PRRFORMANCE"170180190200
 210 PRINT "CODING",P5

 RINT "CODING",PS
 220 PRINT " ","PERFORMANCE AVERAGE=",P6
230 PRINT
240 PRINT.
PRINT " ","TOTAL AVERAGE SCALED SCOREw",T 250

remark complte avg verbal scaled score-wiscrevark compute avg perf scaled score-wisc
INPUT V1, V2, V3,V4,V5,P1,P2,P3, P4,P5
$T=(V 1+V 2+V 3+V 4+V 5+P 1+P 2+P 3+P 4+P 5) / 10$
$V 6=(V 1+V 2+V 3+V 4+V 5) / 5$
$\mathrm{P} 6=(\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4+\mathrm{P} 5) / 5$
PRINT "VERBAL"
print "information", Vl
PRINI "COMIREHENSION", V2
PRINT "ARITHMETIC", V3
PRINT "SIMILARITIES",V4
PRINT
PRINT "PICTURE COMPLEIION",P1
PRINI "PICTURE ARRANGEMENT",P2
PRINT "BLOCK DESICN",P3
PRINT "OBJECT ASSEMBLY",P4
ANSWERS - to problems found on page 19

1) $\mathbf{1 0 ~ T O ~ G O}$ 25
2) 10 IF B<A THEN 25
or
10 IF A>B THEN 25
3) $(E+F) \star M$
4). $=x,\langle=\langle\rangle,,\langle=\rangle=$,
4) IF Z $>\mathrm{XTHEN}$ 36
or
IF $X<2$ AHEN 36
5) a) The program prints an average of the values entared by the INPUT statement. It has been written to process fifty data cards.
b) The program_adds 5.2 to the value originally entered in G. It computes an average of the new value of G and the values of C and M entered with the INPUT statement. It divides R as entered by the INPUI statement by this average and multiplies this quotient by 100.
c) This program accumulates all the data that is entered and prints out each new sum.
6) a) 50 times
b) 1 time
c) indefinite number of times
7) a) 9

9
b) $L=10.43$
$Q=24.27$
A) 2

12
21
9) a) unacceptable. Variable names can only contain two characters, the firmt must be alphabetic and the second must be a digit.
b) unacceptable. Only signed or unsigned numeric constants can be entered by the INPUT instruction.
c) acceptable
d) acceptable.
(1) e) unacceptable. The IF statement requires a.THEN 210 IF ASm2 THIN 20 It wili not accept a CO TO
f) Unacceptable. The $\mathbf{G O}$ TO statement must have a statement number following it, it will not accept a string constant.
g) Unacceptable. The STOP statement requires that nothing follow the word STOP.
h) acceptable.
i) unacceptable. Only variables canibe used in the INPUT statement
j) unacceptable.
10) a $10 \quad c=0$

20 IF C=6 THEN 110
30 INPUT, I, F1,F2,F3,F4
$35 \quad \mathrm{C}=\mathrm{C}+1$
40 IF Fl=0 THEN 80
50 IF F2=0 THEN 80
60 LF F3=0 THEN 80
70 GO TO 20
80 PRINT I, " $500 \mathrm{Hz=",F1}, \mathrm{"1000Hz=",F2,"2000Hz=",F3,"400012=",F4}$
90 PRINT
100 GO TO 20
110 STOP
120 END

1) a) acceptable
b) acceptable
c) unacceptable - a two character variable name must begin with an alphabeiic character
d) unacceptable - subscripted varibles must have their dimension enclosed in parentheses either R3(3) of R(33)
e) acceptable
f) unacceptable - the dimension must be a whole number
g) acceptable
h) acceptable
i) acceptable
j) unacceptable - a two character variable name must begin with an alphabetic character and can only have a numeric character or dollar sign as the second character.
2) DIM T(12)
3) $T(7)=.01$
$T(3)=10.5$
$T(12)=21$
$T(15)=$ undefined, no such :ariable
4) a) acceptable
b) acceptable
c) unacceptable. The variable used in the NEXT must be the same as that directly following the FOR. In this example, one should code NEXT S
d) acceptable.
5) a) 19
b) 3
c) 10

$$
1,3,5,7,9,11,13,15,17,19
$$

6)

10 FOR I=1 TO 5
20 INPUT J
30 PRINT J
40 NEXT I
50 STOP
60 END

[^0]: $\because \quad n \mathrm{~m}$
 $\begin{array}{ll}\text { GRADE } & 1.6 \\ \text { GRADE } & 3.2 \\ \text { GRADE } & 1.7\end{array}$

 WIDE-RAYGE AE-:EロEVEV TESTS

 1.7

 ## 76

[^1]: ivi
 isi

 | \because |
 | :--- |
 | \because |
 | |
 | |

 \cdots
 $\because \because$

 w
 0
 0
 0
 0
 0
 0
 0
 6

